Skip to main content
Log in

Immobilization of modified penicillin G acylase on Sepabeads carriers

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

An approach to stable covalent immobilization of chemically modified penicillin G acylase from Escherichia coli on Sepabeads® carriers with high retention of hydrolytic activity and thermal stability is presented. The two amino-activated polymethacrylate particulate polymers with different spacer lengths used in the study were Sepabeads® EC EA and Sepabeads® EC HA. The enzyme was first modified by cross-linking with polyaldehyde derivatives of starch in order to provide it with new useful functions. Such modified enzyme was then covalently immobilized on amino supports. The method seems to provide a possibility to couple the enzyme without risking a reaction at the active site which might cause the loss of activity. Performances of these immobilized biocatalysts were compared with those obtained by the conventional method with respect to activity and thermal stability. The thermal stability study shows that starch-PGA immobilized on Sepabeads EC-EA was almost 4.5-fold more stable than the conventionally immobilized one and 7-fold more stable than free non-modified PGA. Similarly, starch-PGA immobilized on Sepabeads EC-HA was around 1.5- fold more stable than the conventionally immobilized one and almost 9.5-fold more stable than free non-modified enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Duri, B., & Yong, Y. P. (2000). Lipase immobilisation: an equilibrium study of lipases immobilised on hydrophobic and hydrophilic/hydrophobic supports. Biochemical Engineering Journal, 4, 207–215. DOI: 10.1016/S1369-703X(99)00050-9.

    Article  CAS  Google Scholar 

  • Alvaro, G., Blanco, R. M., Fernandez-Lafuente, R., & Guisan, J. M. (1990). Immobilization-stabilization of penicillin G acylase from E. coli. Applied Biochemistry and Biotechnology, 26, 181–195. DOI: 10.1007/BF02921533.

    Article  CAS  Google Scholar 

  • Betancor, L., López-Gallego, F., Hidalgo, A., Alonso-Morales, N., Dellamora-Ortiz, G., Mateo, C., Fernández-Lafuente, R., & Guisán, J. M. (2006). Different mechanisms of protein immobilization on glutaraldehyde activated supports: effect of support activation and immobilization conditions. Enzyme and Microbial Technology, 39, 877–882. DOI: 10.1016/j.enzmictec.2006.01.014.

    Article  CAS  Google Scholar 

  • Blanco, R. M., Calvete, J. J., & Guisán, J. M. (1989). Immobilization-stabilization of enzymes; variables that control the intensity of the trypsin (amine)-agarose (aldehyde) multipoint covalent attachment. Enzyme and Microbial Technology, 11, 353–359. DOI: 10.1016/0141-0229(89)90019-7.

    Article  CAS  Google Scholar 

  • Cardias, H. C. T., Grininger, C. C., Trevisan, H. C., Guisan, J. M., & Giordano, R. L. C. (1999). Influence of activation on the multipoint immobilization of penicillin G acylase on macroporous silica. Brazilian Journal of Chemical Engineering, 16, 141–148.

    Article  CAS  Google Scholar 

  • DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356. DOI: 10.1021/ac60111a017.

    Article  CAS  Google Scholar 

  • Eldin, M. S. M., Schroën, C. G. P. H., Janssen, A. E. M., Mita, D. G., & Tramper, J. (2000). Immobilization of penicillin G acylase onto chemically grafted nylon particles. Journal of the Molecular Catalysis B: Enzymatic, 10, 445–451. DOI: 10.1016/S1381-1177(99)00122-8.

    Article  Google Scholar 

  • Fernández-Lafuente, R., Rosell, C. M., Alvaro, G., & Guisán, J. M. (1992). Additional stabilization of penicillin G acylaseagarose derivatives by controlled chemical modification with formaldehyde. Enzyme and Microbial Technology, 14, 489–495. DOI: 10.1016/0141-0229(92)90143-C.

    Article  Google Scholar 

  • Fernandez-Lafuente, R., Rosell, C. M., Caanan-Haden, L., Rodes, L., & Guisan, J. M. (1999). Facile synthesis of artificial enzyme nano-environments via solid-phase chemistry of immobilized derivatives: Dramatic stabilization of penicillin acylase versus organic solvents. Enzyme and Microbial Technology, 24, 96–103. DOI: 10.1016/S0141-0229(98)00102-1.

    Article  CAS  Google Scholar 

  • Guisán, J. M. (1988). Aldehyde-agarose gel as activated supports for immobilization-stabilization of enzymes. Enzyme and Microbial Technology, 10, 375–382. DOI: 10.1016/0141-0229(88)90018-X.

    Article  Google Scholar 

  • Guisán, J. M., Alvaro, G., Fernandez-Lafuente, R., Rosell, C. M., Garcia, J. L., & Tagliani, A. (1993). Stabilization of a heterodymeric enzyme by multi-point covalent immobilization: Penicillin G acylase from Kluyvera citrophila. Biotechnology and Bioengineering, 42, 455–464. DOI: 10.1002/bit.260420408.

    Article  Google Scholar 

  • Gupta, M. N. (1991). Thermostabilization of proteins. Biotechnology and Applied Biochemistry, 14, 1–11.

    Google Scholar 

  • Illanes, A., Cabrera, Z., Wilson, L., & Aguirre, C. (2003). Synthesis of cephalexin in ethylene glycol with glyoxylagarose immobilised penicillin acylase: temperature and pH optimisation. Process Biochemistry, 39, 111–117. DOI: 10.1016/S0032-9592(03)00031-1.

    Article  CAS  Google Scholar 

  • Iyer, P. V., & Ananthanarayan, L. (2008). Enzyme stability and stabilization—Aqueous and non-aqueous environment. Process Biochemistry, 43, 1019–1032. DOI: 10.1016/j.procbio. 2008.06.004.

    Article  CAS  Google Scholar 

  • Kallenberg, A., van Rantwijk, F., & Sheldon, R. (2005). Immobilization of penicillin G acylase: the key to optimum performance. Advanced Synthesis and Catalysis, 347, 905–926. DOI: 10.1002/adsc.200505042.

    Article  CAS  Google Scholar 

  • Kazan, D., Ertan, H., & Erarslan, A. (1997). Stabilization of Escherichia coli penicillin G acylase against thermal inactivation by cross-linking with dextran dialdehyde polymers. Applied Microbiology and Biotechnology, 48, 191–197. DOI: 10.1007/s002530051037.

    Article  CAS  Google Scholar 

  • Klibanov, A. M. (1983). Approaches to enzyme stabilization. Biochemical Society Transactions, 11, 19–20.

    CAS  Google Scholar 

  • Kobayashi, M., & Takatsu, K. (1994). Cross-linked stabilization of trypsin with dextran-dialdehyde. Bioscience, Biotechnology, and Biochemistry, 58, 275–278.

    CAS  Google Scholar 

  • Knezevic, Z., Milosavic, N., Bezbradica, D., Jakovljevic, Z., & Prodanovic, R. (2006). Immobilization of lipase from Candida rugosa on Eupergit® C supports by covalent attachment. Biochemical Engineering Journal, 30, 269–278. DOI: 10.1016/j.bej.2006.05.009.

    Article  CAS  Google Scholar 

  • López-Gallego, F., Betancor, L., Mateo, C., Hidalgo, A., Alonso-Morales, N., Dellamora-Ortiz, G., Guisán, J. M., & Fernández-Lafuente, R. (2005). Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports. Journal of Biotechnology, 119, 70–75. DOI: 10.1016/j.jbiotec.2005.05.021.

    Article  CAS  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  • Martinek, K., Klibanov, A. M., Goldmacher, V. S., & Berezin, I. V. (1977). The principles of enzyme stabilization. I. Increase in thermostability of enzymes covalently bound to a complementary surface of a polymer support in a multipoint fashion. Biochimica et Biophysica Acta, 485, 1–12.

    CAS  Google Scholar 

  • Mateo, C., Abian, O., Fernández-Lorente, G., Pedroche, J., Fernández-Lafuente, R., Guisan, J. M., Tam, A., & Daminati, M. (2002). Epoxy Sepabeads: A novel epoxy support for stabilization of industrial enzymes via very intense multipoint covalent attachment. Biotechnology Progress, 18, 629–634. DOI: 10.1021/bp010171n.

    Article  CAS  Google Scholar 

  • Mateo, C., Palomo, J.M., Fernandez-Lorente, G., Guisan, J.M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40, 1451–1463. DOI: 10.1016/j.enzmictec.2007.01.018.

    Article  CAS  Google Scholar 

  • Mislovicová, D., Masárová, J., Bucko, M., & Gemeiner, P. (2006). Stability of penicillin G acylase modified with various polysaccharides. Enzyme and Microbial Technology, 39, 579–585. DOI: 10.1016/j.enzmictec.2005.11.012.

    Article  CAS  Google Scholar 

  • Öztürk, D. C., Kazan, D., & Erarslan, I. (2002). Stabilization and functional properties of Escherichia coli penicillin G acylase with covalent conjugation of anionic polysaccharide carboxymethylcellulose. World Journal of Microbiology and Biotechnology, 18, 881–888. DOI: 10.1023/A:1021262826254.

    Article  Google Scholar 

  • Resindion SRL (2006). Mitsubishi Chemical Corporation: Products Line. Retrieved from http://www.resindion.com

  • Terreni, M., Ubiali, D., Bavaro, T., Pregnolato, M., Fernández-Lafuente, R., & Guisán, J. M. (2007). Enzymatic synthesis of cephalosporins. The immobilized acylase from Arthrobacter viscosus: A new useful biocatalysts. Applied Microbiology and Biotechnology, 77, 579–587. DOI: 10.1007/s00253-007-1186-3.

    Article  CAS  Google Scholar 

  • Torres-Guzmán, R., de la Mata, I., Torres-Bacete, J., Arroyo, M., Castillón, M. P., & Acebal, C. (2002). Substrate specificity of penicillin acylase from Streptomyces lavendulae. Biochemical and Biophysical Research Communications, 291, 593–597. DOI: 10.1006/bbrc.2002.6485.

    Article  CAS  Google Scholar 

  • van Langen, L. M., Janssen, M. H. A., Oosthoek, N. H. P., Pereira, S. R. M., Svedas, V. K., van Rantwijk, F., & Sheldon, R. A. (2002). Active site titration as a tool for the evaluation of immobilization procedures of penicillin acylase. Biotechnology and Bioengineering, 79, 224–228. DOI: 10.1002/bit.10280.

    Article  CAS  Google Scholar 

  • Villalonga, R., Villalonga, M. L., & Gómez, L. (2000). Preparation and functional properties of trypsin modified by carboxymethylcellulose. Journal of Molecular Catalysis B: Enzymatic, 10, 483–490. DOI: 10.1016/S1381-1177(00)00003-5.

    Article  CAS  Google Scholar 

  • Zuza, M. G., Šiler-Marinković, S. S., & Knezević, Z. D. (2007). Preparation and characterization of penicillin acylase immobilized on Sepabeads EC-EP carrier. Chemical Industry & Chemical Engineering Quarterly, 13, 205–210.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milena Žuža.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Žuža, M., Milosavić, N. & Knežević-Jugović, Z. Immobilization of modified penicillin G acylase on Sepabeads carriers. Chem. Pap. 63, 117–124 (2009). https://doi.org/10.2478/s11696-009-0012-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-009-0012-z

Keywords

Navigation