Skip to main content
Log in

Rhizobial communities in symbiosis with legumes: genetic diversity, competition and interactions with host plants

  • Review Article
  • Published:
Central European Journal of Biology

Abstract

The term ‘Rhizobium-legume symbiosis’ refers to numerous plant-bacterial interrelationships. Typically, from an evolutionary perspective, these symbioses can be considered as species-to-species interactions, however, such plant-bacterial symbiosis may also be viewed as a low-scale environmental interplay between individual plants and the local microbial population. Rhizobium-legume interactions are therefore highly important in terms of microbial diversity and environmental adaptation thereby shaping the evolution of plant-bacterial symbiotic systems. Herein, the mechanisms underlying and modulating the diversity of rhizobial populations are presented. The roles of several factors impacting successful persistence of strains in rhizobial populations are discussed, shedding light on the complexity of rhizobial-legume interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Vance C.P., Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources, Plant Physiol., 2001, 127, 390–397

    Article  PubMed  CAS  Google Scholar 

  2. Herridge D.F., Peoples M.B., Boddey R.M., Global inputs of biological nitrogen fixation in agricultural systems, Plant Soil, 2008, 311, 1–18

    Article  CAS  Google Scholar 

  3. Unkovich M.J., Baldock J., Peoples M.B., Prospects and problems of simple linear models for estimating symbiotic N2 fixation by crop and pasture legumes, Plant Soil, 2010, 329, 75–89

    Article  CAS  Google Scholar 

  4. Peoples M.B., Brockwell J., Herridge D.F., Rochester I.J., Alves B.J.R., Urquiaga S., et al., The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems, Symbiosis, 2009, 48, 1–17

    Article  CAS  Google Scholar 

  5. Willems A., The taxonomy of rhizobia: an overview, Plant Soil, 2006, 287, 3–14

    Article  CAS  Google Scholar 

  6. Franche C., Lindström K., Elmerich C., Nitrogenfixing bacteria associated with leguminous and non-leguminous plants, Plant Soil, 2009, 321, 35–59

    Article  CAS  Google Scholar 

  7. Masson-Boivin C., Giraud E., Perret X., Batut J., Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes?, Trends Microbiol., 2009, 17, 458–466

    Article  PubMed  CAS  Google Scholar 

  8. Gyaneshwar P., Hirsch A.M., Moulin L., Wen-Ming Ch., Elliott G.N., Bontemps C., et al., Legumenodulating Betaproteobacteria: diversity, host range, and future prospects, Mol. Plant-Microbe Interact., 2011, 24, 1276–1288

    Article  PubMed  CAS  Google Scholar 

  9. Perret X., Staehelin C., Broughton W.J., Molecular basis of symbiotic promiscuity, Microbiol Mol. Biol. Rev., 2000, 64, 180–201

    Article  PubMed  CAS  Google Scholar 

  10. Ramirez-Bahena M.H., Garcia-Fraile P., Peix A., Valverde A., Rivas R., Igual J.M., et al., Revision of taxonomic status of the species Rhizobium leguminosarum (Frank 1879) Frank 1889AL, Rhizobium phaseoli Dangeard 1926AL and Rhizobium trifolii Dangeard 1926AL. R. trifolii is a later synonym of R. leguminosarum. Reclassification of the strain R. leguminosarum DSM30132 (=NCIMB 11478) as Rhizobium pisi sp. nov., Int. J. Syst. Evol. Microbiol., 2008, 58, 2484–2490

    Article  PubMed  CAS  Google Scholar 

  11. Tian Ch.F., Young J.P.W., Wang E.T., Tamimi S.M., Chen W.X., Population mixing of Rhizobium leguminosarum bv. viciae nodulating Vicia faba: the role of recombination and lateral gene transfer, FEMS Microbiol. Ecol., 2009, 73, 563–576

    Google Scholar 

  12. Doyle J.J., Phylogenetic perspectives on nodulation: evolving views of plants and symbiotic bacteria, Trends Plant Sci., 1998, 3, 473–478

    Article  Google Scholar 

  13. Lee A., Hirsch A.M., Choreographing the complex interaction between legumes and α- and β-rhizobia, Plant Signal Behav., 2006, 1, 161–168

    Article  PubMed  Google Scholar 

  14. Jones K.M., Kobayashi H., Davies B.W., Taga M.E., Walker G.C., How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model, Nat. Rev. Microbiol., 2007, 5, 619–633

    Article  PubMed  CAS  Google Scholar 

  15. den Herder G., Parniske M, The unbearable naivety of legumes in symbiosis, Curr. Opin. Plant Biol. 2009, 12, 491–499

    Article  CAS  Google Scholar 

  16. Timmers A.C., Soupene E., Auriac M.C., de Billy F., Vasse J., Boistard P., et al., Saprophytic intracellular rhizobia in alfalfa nodules, Mol. Plant-Microbe Interact., 2000, 13, 1204–1213

    Article  PubMed  CAS  Google Scholar 

  17. Galibert F., Finan T.M., Long S.R., Pühler A., Abola P., Ampe F., et al., The composite genome of the legume symbiont Sinorhizobium meliloti, Science, 2001, 293, 668–672

    Article  PubMed  CAS  Google Scholar 

  18. Gonzalez V., Santamaria R.I., Bustos P., Hernandez-Gonzalez I.L., Medrano-Soto A., Moreno-Hagelsieb G., et al., The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons, Proc. Natl. Acad. Sci. USA, 2006, 103, 3834–3839

    Article  PubMed  Google Scholar 

  19. Young J.P., Crossman L.C., Johnston A.W., Thomson N.R., Ghazoui Z.F., Hull K.H., et al., The genome of Rhizobium leguminosarum has recognizable core and accessory components, Genome Biol., 2006, 7, R34

  20. Palacios R., Newton W.E. (Eds.), Genomes and genomics of nitrogen-fixing organisms, Springer Netherlands, Dordrecht, 2005

    Google Scholar 

  21. Guo X., Flores M., Mavingui P., Fuentes S.I., Hernandez G., Davila G., et al., Natural genomic design in Sinorhizobium meliloti: novel genomic architectures, Genome Res., 2003, 13, 1810–1817

    PubMed  CAS  Google Scholar 

  22. Król J., Mazur A., Marczak M., Skorupska A., Syntenic arrangements of the surface polysaccharide biosynthesis genes in Rhizobium leguminosarum, Genomics, 2007, 89, 237–247

    Article  PubMed  CAS  Google Scholar 

  23. Konstantinidis K.T., Tjedje J.M., Genomic insights that advance the species definition for prokaryotes, Proc. Natl. Acad. Sci. USA, 2004, 102, 2567–2572

    Article  CAS  Google Scholar 

  24. Slater F.R., Bailey M.J., Tett A.J., Turner S.L., Progress towards understanding the fate of plasmids in bacterial communities, FEMS Microbiol. Ecol., 2008, 66, 3–13

    Article  PubMed  CAS  Google Scholar 

  25. Castillo-Ramirez S., Vazques-Castellanos J.F., Gonzalez V., Cevallos M.A., Horizontal gene transfer and diverse functional constrains within a common replication-partitioning system in Alphaproteobacteria: the repABC operon, BMC Genomics, 2009, 10, 536

    Article  PubMed  CAS  Google Scholar 

  26. Mazur A., Majewska B., Stasiak G., Wielbo J., Skorupska A., repABC-based replication systems of Rhizobium leguminosarum bv. trifolii TA1 plasmids: incompatibility and evolutionary analyses, Plasmid, 2011, 66, 53–66

    Article  PubMed  CAS  Google Scholar 

  27. Cervantes-Riviera R., Pedraza-Lopez F., Perez-Segura G., Cevallos M.A., The replication origin of repABC plasmid, BMC Microbiol., 2011, 11, 158

    Article  CAS  Google Scholar 

  28. Landeta C., Davalos A., Cevallos M.A., Geiger O., Brom S., Romero D., Plasmids with chromosomelike role in rhizobia, J. Bacteriol., 2011, 193, 1317–1326

    Article  PubMed  CAS  Google Scholar 

  29. Harrison P.W., Lower R.J.P., Kim N.K.D., Young J.P.W., Introducing the bacterial “chromid”: not a chromosome, not a plasmid, Trends Microbiol., 2010, 18, 141–148

    Article  PubMed  CAS  Google Scholar 

  30. Gonzalez V., Acosta J.L., Santamaria R.I., Bustos P., Fernandez J.L., Hernandez-Gonzalez I.L., et al., Conserved symbiotic plasmid DNA sequences in the multireplicon pangenomic structure of Rhizobium etli, Appl. Environ. Microbiol., 2010, 76, 1604–1614

    Article  PubMed  CAS  Google Scholar 

  31. Bentley S., Sequencing the species pan-genome, Nat. Rev. Microbiol., 2009, 7, 258–259

    Article  PubMed  CAS  Google Scholar 

  32. Mazur A., Stasiak G., Wielbo J., Kubik-Komar A., Marek-Kozaczuk M., Skorupska A., Intragenomic diversity of Rhizobium leguminosarum bv. trifolii clover nodule isolates, BMC Microbiol., 2011, 11, 123

    Article  PubMed  CAS  Google Scholar 

  33. Crossmann L.C., Castillo-Ramirez S., McAnnula C., Lozano L., Vernikos G.S., Acosta J.L., et al., A common genomic framework for a diverse assembly of plasmids in the symbiotic nitrogen fixing bacteria, PLoS One, 2008, 3, e2567

    Article  CAS  Google Scholar 

  34. Brom S., Garcia-de los Santos A., de Lourdes-Girard M., Davilla G., Palacios R., Romero D., High-frequency rearrangements in Rhizobium leguminosarum bv. phaseoli plasmids, J. Bacteriol., 1991, 173, 1344–1346

    PubMed  CAS  Google Scholar 

  35. Brom S., Garcia-de los Santos A., Cervantes L., Palacios R., Romero D., In Rhizobium etli symbiotic plasmid transfer, nodulation competitivity and cellular growth require interaction among different replicons, Plasmid, 2000, 44, 34–43

    Article  PubMed  CAS  Google Scholar 

  36. Brom S., Girard L., Tun-Garrido C., Garcia-de los Santos A., Bustos P., Gonzalez V., et al., Transfer of symbiotic plasmid of Rhizobium etli CFN42 requires cointegration with p42a, which may be mediated by site-specific recombination, J. Bacteriol., 2004, 186, 7538–7548

    Article  PubMed  CAS  Google Scholar 

  37. Broughton W.J., Samrey U., Stanley J., Ecological genetics of Rhizobium meliloti: symbiotic plasmid transfer in the Medicago sativa rhizosphere, FEMS Microbiol. Lett., 1987, 40, 251–255

    Article  CAS  Google Scholar 

  38. Wernegreen J.J., Harding E.E., Riley M.A., Rhizobium gone native: unexpected plasmid stability of indigenous Rhizobium leguminosarum, Proc. Natl. Acad. Sci. USA, 1997, 94, 5483–5488

    Article  PubMed  CAS  Google Scholar 

  39. Bailly X., Olivieri I., Brunel B., Cleyet-Marel J.-C., Bena G., Horizontal gene transfer and homologous recombination drive the evolution of the nitrogenfixing symbionts of Medicago species, J. Bacteriol., 2007, 189, 5223–5236

    Article  PubMed  CAS  Google Scholar 

  40. Ding H., Hynes M.F., Plasmid transfer systems in the rhizobia, Can. J. Microbiol., 2009, 55, 917–927

    Article  PubMed  CAS  Google Scholar 

  41. Giuntini E., Mengoni A., de Filippo C., Cavalieri D., Aubin-Horth N., Landry C.R., et al., Largescale genetic variation of the symbiosis-required megaplasmid pSymA revealed by comparative genomic analysis of Sinorhizobium meliloti natural strains, BMC Genomics, 2005, 6, 158

    Article  PubMed  CAS  Google Scholar 

  42. Cervantes L., Bustos P., Girard L., Santamaria R.I., Davila G., Vinuesa P., et al., The conjugative plasmid of a bean-nodulating Sinorhizobium fredii strain is assembled from sequences of two Rhizobium plasmids and the chromosome of a Sinorhizobium strain, BMC Microbiol., 2011, 11, 149

    Article  PubMed  CAS  Google Scholar 

  43. Zhang X.-X., Kosier B., Priefer U.B., Symbiotic plasmid rearrangement in Rhizobium leguminosarum bv. viciae VF39SM, J. Bacteriol., 2001, 183, 2141–2144

    Article  PubMed  CAS  Google Scholar 

  44. Fondi M., Bacci G., Brilli M., Papaleo M.C., Mengoni A., Vaneechoutte M., et al., Exploring the evolutionary dynamics of plasmids: the Acinetobacter pan-plasmidome, BMC Evol. Biol., 2010, 10, 59

    Article  PubMed  CAS  Google Scholar 

  45. Pistorio M., Giusti M.A., del Papa M.F., Draghi W.O., Lozano M.J., Tejerizo G.T., et al., Conjugal properties of the Sinorhizobium meliloti plasmid mobilome, FEMS Microbiol. Ecol., 2008, 65, 372–382

    Article  PubMed  CAS  Google Scholar 

  46. Martyniuk S., Oron J., Martyniuk M., Diversity and numbers of root-nodule bacteria (rhizobia) in Polish soils, Acta Soc. Bot. Polon., 2005, 74, 83–86

    Google Scholar 

  47. Drew E.A., Ballard R.A., Improving N2 fixation from the plant down: compatibility of Trifolium subterraneum L. cultivars with soil rhizobia can influence symbiotic performance, Plant Soil, 2010, 327, 261–277

    Article  CAS  Google Scholar 

  48. Ballard R.A., Charman N., McInnes A., Davidson J.A., Size, symbiotic effectiveness and genetic diversity of field pea rhizobia (Rhizobium leguminosarum bv. viciae) populations in South Australian soils, Soil Biol. Biochem., 2010, 36, 1347–1355

    Article  CAS  Google Scholar 

  49. Silva C., Kan F.L., Martinez-Romero E., Population genetic structure of Sinorhizobium meliloti and S. medicae isolated from nodules of Medicago spp. in Mexico, FEMS Microbiol. Ecol., 2007, 60, 477–489

    Article  PubMed  CAS  Google Scholar 

  50. Depret G., Laguerre G., Plant phenology and genetic variability on root and nodule development strongly influence genetic structuring of Rhizobium leguminosarum biovar viciae populations nodulating pea, New Phytol., 2008, 179, 224–235

    Article  PubMed  Google Scholar 

  51. Sachs J.L., Kembel S.W., Lau A.H., Simms E.L., In situ phylogenetic structure and diversity of wild Bradyrhizobium communities, Appl. Environ. Microbiol., 2009, 75, 4727–4735

    Article  PubMed  CAS  Google Scholar 

  52. Wielbo J., Marek-Kozaczuk M., Mazur A., Kubik-Komar A., Skorupska A., Genetic and metabolic divergence within a Rhizobium leguminosarum bv. trifolii population recovered from clover nodules, Appl. Environ. Microbiol., 2010, 76, 4593–4600

    Article  PubMed  CAS  Google Scholar 

  53. Wielbo J., Marek-Kozaczuk M., Mazur A., Kubik-Komar A., Skorupska A., The structure and metabolic diversity of population of pea microsymbionts isolated from root nodules, British Microbiology Research Journal, 2011, 1, 55–69

    Google Scholar 

  54. Lakzian A., Murphy P., Turner A., Beynon J.L., Giller K.E., Rhizobium leguminosarum bv. viciae populations in soils with increasing heavy metal contamination: abundance, plasmid profiles, diversity and metal tolerance, Soil Biol. Biochem., 2002, 34, 519–529

    Article  CAS  Google Scholar 

  55. Castro I.V., Ferreira E.M., McGrath S.P., Survival and plasmid stability of rhizobia introduced into a contaminated soil, Soil Biol. Biochem., 2003, 35, 49–54

    Article  CAS  Google Scholar 

  56. Lakzian A., Murphy P., Giller K.E., Transfer and loss of naturally-occurring plasmids among isolates of Rhizobium leguminosarum bv. viciae in heavy metal contaminated soils, Soil Biol. Biochem., 2007, 39, 1066–1077

    Article  CAS  Google Scholar 

  57. Laguerre G., Courde L., Nouaim R., Lamy I., Revellin C., Breuil M.C., et al., Response of rhizobial populations to moderate copper stress applied to an agricultural soil, Microbiol. Ecol., 2006, 52, 426–435

    Article  CAS  Google Scholar 

  58. Denison R.F., Kiers E.T., Lifestyle alternatives for rhizobia: mutualism, parasitism, and forgoing symbiosis, FEMS Microbiol. Lett., 2004, 237, 187–193

    Article  PubMed  CAS  Google Scholar 

  59. Denison R.F., Kiers E.T., Why are most rhizobia beneficial to their plant hosts, rather than parasitic?, Microbes Infect., 2004, 6, 1235–1239

    Article  PubMed  CAS  Google Scholar 

  60. Simms E.L., Taylor D.L., Partner choice in nitrogenfixation mutualism of legumes and rhizobia, Integr. Comp. Biol., 2002, 42, 369–380

    Article  PubMed  Google Scholar 

  61. Oono R., Denison R.F., Kiers E.T., Controlling the reproductive fate of rhizobia: how universal are legume sanctions?, New Phytol., 2009, 183, 967–979

    Article  PubMed  Google Scholar 

  62. Stuurman N., Bras C.P., Schlaman H.R.M., Wijfjes A.H.M., Bloemberg G., Spaink H.P., Use of green fluorescent protein color variants expressed on stable broad-host-range vectors to visualize rhizobia interacting with plants, Mol. Plant Microbe Interact., 2000, 13, 1163–1169

    Article  PubMed  CAS  Google Scholar 

  63. Gage D.J., Infection and invasion of roots by symbiotic nitrogen-fixing rhizobia during nodulation of temperate legumes, Microbiol. Mol. Biol. Rev., 2004, 68, 280–300

    Article  PubMed  CAS  Google Scholar 

  64. Wielbo J., Kuske J., Marek-Kozaczuk M., Skorupska A., The competition between Rhizobium leguminosarum bv. viciae strains progresses until late stages of symbiosis, Plant Soil, 2010, 337, 125–135

    Article  CAS  Google Scholar 

  65. Wielbo J., Marek-Kozaczuk M., Kidaj D., Skorupska A., Competitiveness of Rhizobium leguminosarum bv. trifolii strains in mixed inoculation of clover (Trifolium pratense), Pol. J. Microbiol., 2011, 60, 43–49

    PubMed  Google Scholar 

  66. McInnes A., Thies J.E., Abbott L.K., Howieson J.G., Structure and diversity among rhizobial strains, populations and communities - a review, Soil Biol. Biochem., 2004, 36, 1295–1308

    Article  CAS  Google Scholar 

  67. Vlassak K.M., Vanderleyden J., Factors influencing nodule occupancy by inoculant rhizobia, Crit. Rev. Plant Sci., 1997, 16, 163–229

    Google Scholar 

  68. Robleto E.A., Kmiecik K., Oplinger E.S., Nienhuis J., Triplett E.W., Trifolitoxin production increases nodulation competitiveness of Rhizobium etli CE3 under agricultural conditions, Appl. Environ. Microbiol., 1998, 64, 2630–2633

    PubMed  CAS  Google Scholar 

  69. Wilson R.A., Handley B.A., Beringer J.E., Bacteriocin production and resistance in a field population of Rhizobium leguminosarum bv. viciae, Soil Biol. Biochem., 1998, 30, 413–417

    Article  CAS  Google Scholar 

  70. Oresnik I.J., Twelker S., Hynes M.F., Cloning and characterization of a Rhizobium leguminosarum gene encoding a bacteriocin with similarities to RTX toxins, Appl. Environ. Microbiol., 1999, 65, 2833–2840

    PubMed  CAS  Google Scholar 

  71. Hynes M.F., O’Connel M.P. Host plant effect on competition among strains of Rhizobium leguminosarum, Can. J. Microbiol., 1990, 36, 864–869

    Article  Google Scholar 

  72. Yost C.K., Rath A.M., Noel T.C., Hynes M.F., Characterization of genes involved in erythritol catabolism in Rhizobium leguminosarum bv. viciae, Microbiology, 2006, 152, 2061–2074

    Article  PubMed  CAS  Google Scholar 

  73. Kohler P.R.A., Zheng J.Y., Schoffers E., Rossbach S., Inositol catabolism, a key pathway in Sinorhizobium meliloti for competitive host nodulation, Appl. Environ. Microbiol., 2010, 76, 7972–7980

    Article  PubMed  CAS  Google Scholar 

  74. Wielbo J., Marek-Kozaczuk M., Kubik-Komar A., Skorupska A., Increased metabolic potential of Rhizobium spp. is associated with bacterial competitiveness, Can. J. Microbiol., 2007, 53, 957–967

    Article  PubMed  CAS  Google Scholar 

  75. Ramachandran V.K., East A.K., Karunakaran R., Downie A., Poole P.S., Adaptation of Rhizobium leguminosarum to pea, alfalfa and sugar beet rhizospheres investigated by comparative transcriptomics, Genome Biol. 2011, 12, R106

    Article  PubMed  CAS  Google Scholar 

  76. Gaworzewska E.T., Carlile M.J., Positive chemotaxis of Rhizobium leguminosarum and other bacteria towards root exudates from legumes and other plants, J. Gen. Microbiol., 1982, 128, 1179–1188

    CAS  Google Scholar 

  77. Bertin C., Yang X., Weston L.A., The role of root exudates and allelochemicals in the rhizosphere, Plant Soil, 2003, 256, 67–83

    Article  CAS  Google Scholar 

  78. Prell J., Poole P., Metabolic changes of rhizobia in legume nodules, Trends Microbiol., 2006, 14, 161–168

    Article  PubMed  CAS  Google Scholar 

  79. White J., Prell J., James E.K., Poole P., Nutrient sharing between symbionts, Plant Physiol., 2007, 144, 604–614

    Article  PubMed  CAS  Google Scholar 

  80. Mellor H.Y., Glenn A.R., Dilworth M.J., Symbiotic and competitive properties of motility mutants of Rhizobium trifolii TA1, Arch. Microbiol., 1987, 148, 34–39

    Article  CAS  Google Scholar 

  81. Miller L.D., Yost C.K., Hynes M.F., Alexandre G., The major chemotaxis gene cluster of Rhizobium leguminosarum bv. viciae is essential for competitive nodulation. Mol. Microbiol., 2007, 63, 348–362

    Article  PubMed  CAS  Google Scholar 

  82. Mabood F., Jung W.J., Smith D.L., Signals in the underground: microbial signaling and plant productivity, In: Nautiyal C.S., Dion P.E., Chopra V.L. (Eds.), Molecular mechanisms of plant and microbe coexistence, Springer-Verlag Berlin, Heidelberg, 2008

    Google Scholar 

  83. Maj D., Wielbo J., Marek-Kozaczuk M., Skorupska A., Response to flavonoids as a factor influencing competitiveness and symbiotic activity of Rhizobium leguminosarum, Microbiol. Res., 2010, 165, 50–60

    Article  PubMed  CAS  Google Scholar 

  84. Mongiardini E.J., Ausmees N., Perez-Gimenez J., Althabegoiti M.J., Quelas J.I., Lopez-Garcia S.L., et al., The rhizobial adhesion protein RapA1 is involved in adsorption of rhizobia to plant roots but not in nodulation, FEMS Microbiol. Ecol., 2008, 65, 279–288

    Article  PubMed  CAS  Google Scholar 

  85. Mongiardini E.J., Perez-Gimenez J., Althabegoiti M.J., Covelli J., Quelas J.I., Lopez-Garcia S.L., et al., Overproduction of the rhizobial adhesion RapA1 increases competitiveness for nodulation, Soil. Biol. Biochem., 2009, 41, 2017–2020

    Article  CAS  Google Scholar 

  86. Moënne-Loccoz Y., Weaver R.W., Involvement of plasmids in saprophytic performance and sodium chloride tolerance of clover rhizobia W14-2 in vitro, Appl. Soil Ecol., 1996, 3, 137–148

    Article  Google Scholar 

  87. Vinuesa P., Neumann-Silkow F., Pacios-Bras C., Spaink H.P., Martinez-Romero E., Werner D., Genetic analysis of a pH-regulated operon from Rhizobium tropici CIAT899 involved in acid tolerance and nodulation competitiveness, Mol. Plant-Microbe Interact., 2003, 16, 159–168

    Article  PubMed  CAS  Google Scholar 

  88. Streeter J.G., Effect of trehalose on survival of Bradyrhizobium japonicum during desiccation, J. Appl. Microbiol., 2003, 95, 484–491

    Article  PubMed  CAS  Google Scholar 

  89. McIntyre H.J., Davies H., Hore T.A., Miller S.H., Dufour J.P., Ronson C.W., Trehalose biosynthesis in Rhizobium leguminosarum bv. trifolii and its role in desiccation tolerance, Appl. Environ. Microbiol., 2007, 73, 3984–3992

    Article  PubMed  CAS  Google Scholar 

  90. Wielbo J., Kidaj D., Koper P., Kubik-Komar A., Skorupska A., The effect of biotic and physical factors on the competitive ability of Rhizobium leguminosarum, Cent. Eur. J. Biol., 2012, 7, 13–24

    Article  CAS  Google Scholar 

  91. Duodu S., Bhuvaneswari T.V., Gudmundsson J., Svenning M.M., Symbiotic and saprophytic survival of three unmarked Rhizobium leguminosarum biovar trifolii strains introduced into the field, Environ. Microbiol., 2005, 7, 1049–1058

    Article  PubMed  CAS  Google Scholar 

  92. Jensen E.S., Sorensen L.H., Survival of Rhizobium leguminosarum in soil after addition as inoculants, FEMS Microbiol. Ecol., 1987, 45, 221–226

    Article  Google Scholar 

  93. Svenning M.M., Gudmundsson J., Fagerli I.L., Leinonen P., Competition for nodule occupancy between introduced strains of Rhizobium leguminosarum bv. trifolii and its influence on plant production, Ann. Bot., 2001, 88, 781–787

    Article  Google Scholar 

  94. Martyniuk S., Wozniakowska A., Martyniuk M., Effect of agricultural practices on populations of Rhizobium in some field experiments, Bot. Lithuanica, 1999, suppl. 3, 99–102

  95. Palmer K.M., Young J.P.W., Higher diversity of Rhizobium leguminosarum biovar viciae populations in arable soils than in grassland soils, Appl. Environ. Microbiol., 2000, 66, 2445–2450

    Article  PubMed  CAS  Google Scholar 

  96. Rangin C., Brunel B., Cleyet-Marel J.-C., Perrineau M.-M., Bena G., Effects of Medicago truncatula genetic diversity, rhizobial competition, and strain effectiveness on the diversity of a natural Sinorhizobium species community, Appl. Environ. Microbiol., 2008, 74, 5653–5661

    Article  PubMed  CAS  Google Scholar 

  97. Ikeda S., Okubo T., Anda M., Nakashita H., Yasuda M., Sato S., et al., Community- and genomebased views of plant-associated bacteria: plantbacterial interactions in soybean and rice, Plant Cell Physiol., 2010, 51, 1398–1410

    Article  PubMed  CAS  Google Scholar 

  98. Gubry-Rangin C., Garcia M., Bena G., Partner choice in Medicago truncatula-Sinorhizobium symbiosis, Proc. R. Soc. B., 2010, 277, 1947–1951

    Article  PubMed  Google Scholar 

  99. Laguerre G., Depret G., Bourion V., Duc G., Rhizobium leguminosarum bv. viciae genotypes interact with pea plants in developmental responses of nodules, roots and shoots, New Phytol., 2007, 176, 680–690

    Article  PubMed  Google Scholar 

  100. Barcellos F.G., Menna P., da Silva Batista J.S., Hungria M., Evidence of horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum inoculant strain to indigenous diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in Brazilian savannah soil, Appl. Environ. Microbiol., 2007, 73, 2635–2643

    Article  PubMed  CAS  Google Scholar 

  101. Steenkamp E.T., Stępkowski T., Przymusiak A., Botha W.J., Law I.J., Cowpea and peanut in southern Africa are nodulated by diverse Bradyrhizobium strains harboring nodulation genes that belong to the large pantropical clade common in Africa, Mol. Phylogenet. Evol., 2008, 48, 1131–1144

    Article  PubMed  CAS  Google Scholar 

  102. Estrella M.J., Munoz S., Soto M.J., Ruiz O., Sanjuan J., Genetic diversity and host range of rhizobia nodulating Lotus tenuis in typical soils of the Salado River basin (Argentina), Appl. Environ. Microbiol., 2009, 75, 1088–1098

    Article  PubMed  CAS  Google Scholar 

  103. Aoki S., Kondo T., Prevost D., Nakata S., Kajita T., Ito M., Genotypic and phenotypic diversity of rhizobia isolated from Lathyrus japonicus indigenous to Japan, Syst. Appl. Microbiol., 2010, 33, 383–397

    Article  PubMed  CAS  Google Scholar 

  104. Alvarez-Martinez E.R., Valverde A., Ramirez-Bahena M.H., Garcia-Fraile P., Tejedor C., Mateos P.F., et al., The analysis of core and symbiotic genes reveals their common phylogenetic origin and suggests the distribution of Rhizobium leguminosarum strains together with Vicia seeds, Arch. Microbiol., 2009, 191, 659–668

    Article  PubMed  CAS  Google Scholar 

  105. Han T.X, Tian Ch.F., Wang E.T., Chen W.X., Associations among rhizobial chromosomal background, nod genes and host plants based on the analysis of symbiosis of indigenous rhizobia and wild legumes native to Xinjiang, Microb. Ecol., 2010, 59, 311–323

    Article  PubMed  Google Scholar 

  106. Stępkowski T., Moulin L., Krzyżanska A., McInnes A., Law I.J., Howieson J., European origin of Bradyrhizobium populations infecting lupins and serradella in soils of Western Australia and South Africa, Appl. Environ. Microbiol., 2005, 71, 7041–7052

    Article  PubMed  CAS  Google Scholar 

  107. Stępkowski T., Hughes C.E., Law I.J., Markiewicz Ł., Gurda D., Chlebicka A., et al., Diversification of lupine Bradyrhizobium strains: evidence from nodulation gene trees, Appl. Environ. Microbiol., 2007, 73, 3254–3264

    Article  PubMed  CAS  Google Scholar 

  108. de Meyer S.E., van Hoorde K., Vekeman B., Braeckman T., Willems A., Genetic diversity of rhizobia associated with indigenous legumes in different regions of Flanders (Belgium), Soil Biol. Biochem., 2011, 43, 2384–2396

    Article  CAS  Google Scholar 

  109. Aguilar O.M., Riva O., Peltzer E., Analysis of Rhizobium etli and of its symbiosis with wild Phaseolus vulgaris supports coevolution in centers of host diversification, Proc. Natl. Acad. Sci. USA, 2004, 101, 13548–13553

    Article  PubMed  CAS  Google Scholar 

  110. Martinez-Romero E., Coevolution in Rhizobiumlegume symbiosis?, DNA Cell Biol., 2009, 28, 361–370

    Article  PubMed  CAS  Google Scholar 

  111. Doyle J.J., Phylogenetic perspectives on the origins of nodulation, Mol. Plant-Microbe Interact., 2011, 24, 1289–1295

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Wielbo.

About this article

Cite this article

Wielbo, J. Rhizobial communities in symbiosis with legumes: genetic diversity, competition and interactions with host plants. cent.eur.j.biol. 7, 363–372 (2012). https://doi.org/10.2478/s11535-012-0032-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-012-0032-5

Keywords

Navigation