Skip to main content
Log in

Infectious disease — a genetic view

  • Review Article
  • Published:
Central European Journal of Biology

Abstract

Genetic analysis of resistance to infectious disease reveals many important cues that have led to new insights into the interaction between pathogen and host. This knowledge might help with a better prognosis for diseases, and to the development of novel therapeutics. This review focuses on genes and loci that control susceptibility to diseases with an important epidemiologic impact, such as AIDS, hepatitis B, gastritis and peptic ulcer, tuberculosis, leprosy, malaria, schistosomiasis and leishmaniasis. New perspectives for the integration of human and mouse genetics that contribute greatly to our understanding of regulatory mechanisms in health and disease, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

C13orf31:

chromosome 13 open reading frame 31

CCDC122:

coiled coil domain containing 122

CCR2:

chemokine (C-C motif) receptor 2

CCR5:

C-C chemokine receptor type 5, seven transmembrane spanning chemokine receptor

CD8:

T-lymphocyte subset

CD36:

Cluster of Differentiation 36

CSF :

colony-stimulating factor

CXCR4:

receptor for a chemokine also known as fusin

DARC:

Duffy antigen receptor for chemokines

HLA:

Human Leucocyte Antigen

IFN-AR2 :

second subunit of the type I IFN receptor

IFNGRI :

interferon gamma receptor 1

IL-10RB :

Interleukin10 receptor beta

IL1B :

Interleukin-1 beta

IL12B :

(b chain of the interleukin 12)

Lmr :

Leishmania major response

MHC:

Major Histocompatibility Complex

NOD2 :

nucleotide-binding oligomerization domain containing 2

NRAMP1:

natural resistance associated macrophage protein 1

NRAMP1/SLC11A1 :

natural resistance associated macrophage protein 1/solute carrier family 11, member 1

RIPK2 :

Receptor-interacting serine/threonine-protein kinase 2

SLC11A1 :

solute carrier family 11, member 1

SLC4A1 :

solute carrier family 4, member 1 (erythrocyte membrane protein band 3, Diego blood group)

SP110 :

gene for Sp110 nuclear body protein

TNFA :

tumor necrosis factor alpha

TNFSF15 :

tumor necrosis factor superfamily 15

References

  1. Ehrenstein M.R., Notley C.A., The importance of natural IgM: scavenger, protector and regulator, Nat. Rev. Immunol., 2010, 10, 778–786

    Article  CAS  PubMed  Google Scholar 

  2. Zhong H., Yang X., Kaplan L.M., Molony C., Schadt E.E., Integrating pathway analysis and genetics of gene expression for genome-wide association studies, Am. J. Hum. Genet., 2010, 86, 581–591

    Article  CAS  PubMed  Google Scholar 

  3. Lipoldová M., Demant P., Genetic susceptibility to infectious disease: lessons from mouse models of leishmaniasis, Nat. Rev. Genet., 2006, 7, 294–305

    Article  PubMed  CAS  Google Scholar 

  4. Haagmans B.L., Andeweg A.C., Osterhaus A.D., The application of genomics to emerging zoonotic viral diseases, PLoS Pathog., 2009, 5, e1000557

    Article  PubMed  CAS  Google Scholar 

  5. Cooke G.S., Hill A.V., Genetics of susceptibility to human infectious disease, Nat. Rev. Genet., 2001, 2, 967–977

    Article  CAS  PubMed  Google Scholar 

  6. Thursz M.R., Kwiatkowski D., Allsopp C.E., Greenwood B.M., Thomas H.C., Hill A.V., Association between an MHC class II allele and clearance of hepatitis B virus in the Gambia, N. Engl. J. Med., 1995, 332, 1065–1069

    Article  CAS  PubMed  Google Scholar 

  7. Turner M.W., The role of mannose-binding lectin in health and disease, Mol. Immunol., 2003, 40, 423–429

    Article  CAS  PubMed  Google Scholar 

  8. Thomas H.C., Foster G.R., Sumiya M., McIntosh D., Jack D.L., Turner M.W., et al., Mutation of gene of mannose-binding protein associated with chronic hepatitis B viral infection, Lancet, 1996, 348, 1417–1419

    Article  CAS  PubMed  Google Scholar 

  9. Blackwell J.M., Black G.F., Peacock C.S., Miller E.N., Sibthorpe D., Gnananandha D., et al., Immunogenetics of leishmanial and mycobacterial infections: the Belem Family Study, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 1997, 352, 1331–1345

    Article  CAS  PubMed  Google Scholar 

  10. Chen D.Q., Zeng Y., Zhou J., Yang L., Jiang S., Huang J.D., et al., Association of candidate susceptible loci with chronic infection with hepatitis B virus in a Chinese population, J. Med. Virol., 2010, 82, 371–378

    Article  CAS  PubMed  Google Scholar 

  11. Blackwell J.M., Goswami T., Evans C.A., Sibthorpe D., Papo N., White J.K., et al., SLC11A1 (formerly NRAMP1) and disease resistance, Cell. Microbiol., 2001, 3, 773–784

    Article  CAS  PubMed  Google Scholar 

  12. Lykouras D., Sampsonas F., Kaparianos A., Karkoulias K., Tsoukalas G., Spiropoulos K., Human genes in TB infection: their role in immune response, Monaldi Arch. Chest. Dis., 2008, 69, 24–31

    CAS  PubMed  Google Scholar 

  13. McDermid J.M., Prentice A.M., Iron and infection: effects of host iron status and the iron-regulatory genes haptoglobin and NRAMP1 (SLC11A1) on host-pathogen interactions in tuberculosis and HIV, Clin. Sci. (Lond.), 2006, 110, 503–524

    Article  CAS  Google Scholar 

  14. Williams T.N., Red blood cell defects and malaria, Mol. Biochem. Parasitol., 2006, 149, 121–127

    Article  CAS  PubMed  Google Scholar 

  15. Lipoldová M., Genetic control of susceptibility to human infectious diseases., In: Jonák J., Jonák J. Jr, (Eds.), Molecular Biology and Genetics XII, Institute of Molecular Genetics, Academy of Sciences, Prague, Czech Republic, 2006, 91–104

  16. Willyard C., Researchers come together to study natural HIV resistance, Nat. Med., 2009, 15, 1233

    Article  CAS  PubMed  Google Scholar 

  17. Deng H., Liu R., Ellmeier W., Choe S., Unutmaz D., Burkhart M., et al., Identification of a major co-receptor for primary isolates of HIV-1, Nature, 1996, 381, 661–666

    Article  CAS  PubMed  Google Scholar 

  18. Liu R., Paxton W.A., Choe S., Ceradini D., Martin S.R., Horuk R., et al., Homozygous defect in HIV- 1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection, Cell, 1996, 86, 367–377

    Article  CAS  PubMed  Google Scholar 

  19. Parczewski M., Leszczyszyn-Pynka M., Kaczmarczyk M., Adler G., Binczak-Kuleta A., Loniewska B., et al., Sequence variants of chemokine receptor genes and susceptibility to HIV-1 infection, J. Appl. Genet., 2009, 50, 159–166

    Article  CAS  PubMed  Google Scholar 

  20. Verma R., Gupta R.B., Singh K., Bhasin R., Anand Shukla A., Chauhan S.S., et al., Distribution of CCR5delta32, CCR2-64I and SDF1-3’A and plasma levels of SDF-1 in HIV-1 seronegative North Indians, J. Clin. Virol., 2007, 38, 198–203

    Article  CAS  PubMed  Google Scholar 

  21. Kaslow R.A., Carrington M., Apple R., Park L., Munoz A., Saah A.J., et al., Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection, Nat. Med., 1996, 2, 405–411

    Article  CAS  PubMed  Google Scholar 

  22. Kiprov D.D., Sheppard H.W., Hanson C.V., Alloimmunization to prevent AIDS?, Science, 1994, 263, 737–738

    Article  CAS  PubMed  Google Scholar 

  23. Fowke K.R., Nagelkerke N.J., Kimani J., Simonsen J.N., Anzala A.O., Bwayo J.J., et al., Resistance to HIV-1 infection among persistently seronegative prostitutes in Nairobi, Kenya, Lancet, 1996, 348, 1347–1351

    Article  CAS  PubMed  Google Scholar 

  24. Mittleman B.B., Shearer G.M., Mother-toinfant transmission of HIV type 1: role of major histocompatibility antigen differences, AIDS Res. Hum. Retroviruses, 1996, 12, 1397–1400

    Article  CAS  PubMed  Google Scholar 

  25. Hardie R.A., Knight E., Bruneau B., Semeniuk C., Gill K., Nagelkerke N., et al., A common human leucocyte antigen-DP genotype is associated with resistance to HIV-1 infection in Kenyan sex workers, AIDS, 2008, 22, 2038–2042

    Article  CAS  PubMed  Google Scholar 

  26. Delanghe J.R., Langlois M.R., Boelaert J.R., Van Acker J., Van Wanzeele F., van der Groen G., et al., Haptoglobin polymorphism, iron metabolism and mortality in HIV infection, AIDS, 1998, 12, 1027–1032

    Article  CAS  PubMed  Google Scholar 

  27. Thursz M.R., Host genetic factors influencing the outcome of hepatitis, J. Viral Hepat., 1997, 4, 215–220

    Article  CAS  PubMed  Google Scholar 

  28. Frodsham A.J., Zhang L., Dumpis U., Taib N.A., Best S., Durham A., et al., Class II cytokine receptor gene cluster is a major locus for hepatitis B persistence, Proc. Natl. Acad. Sci. USA, 2006, 103, 9148–9153

    Article  CAS  PubMed  Google Scholar 

  29. Falush D., Wirth T., Linz B., Pritchard J.K., Stephens M., Kidd M., et al., Traces of human migrations in Helicobacter pylori populations, Science, 2003, 299, 1582–1585

    Article  CAS  PubMed  Google Scholar 

  30. Moodley Y., Linz B., Helicobacter pylori Sequences Reflect Past Human Migrations, Genome Dyn., 2009, 6, 62–74

    Article  CAS  PubMed  Google Scholar 

  31. Malaty H.M., Evans D.G., Evans D.J. Jr., Graham D.Y., Helicobacter pylori in Hispanics: comparison with blacks and whites of similar age and socioeconomic class, Gastroenterology, 1992, 103, 813–816

    CAS  PubMed  Google Scholar 

  32. Gonzalez C.A., Sala N., Capella G., Genetic susceptibility and gastric cancer risk, Int. J. Cancer, 2002, 100, 249–260

    Article  CAS  PubMed  Google Scholar 

  33. Rosenstiel P., Hellmig S., Hampe J., Ott S., Till A., Fischbach W., et al., Influence of polymorphisms in the NOD1/CARD4 and NOD2/CARD15 genes on the clinical outcome of Helicobacter pylori infection, Cell Microbiol., 2006, 8, 1188–1198

    Article  CAS  PubMed  Google Scholar 

  34. Aird I., Bentall H.H., Mehigan J.A., Roberts J.A., The blood groups in relation to peptic ulceration and carcinoma of colon, rectum, breast, and bronchus; an association between the ABO groups and peptic ulceration, Br. Med. J., 1954, 2, 315–321

    Article  CAS  PubMed  Google Scholar 

  35. Henry S., Oriol R., Samuelsson B., Lewis histoblood group system and associated secretory phenotypes, Vox. Sang., 1995, 69, 166–182

    Article  CAS  PubMed  Google Scholar 

  36. Boren T., Falk P., Roth K.A., Larson G., Normark S., Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens, Science, 1993, 262, 1892–1895

    Article  CAS  PubMed  Google Scholar 

  37. Murray C.J., Styblo K., Rouillon A., Tuberculosis in developing countries: burden, intervention and cost, Bull. Int. Union Tuberc. Lung Dis., 1990, 65, 6–24

    CAS  PubMed  Google Scholar 

  38. Corbett E.L., Watt C.J., Walker N., Maher D., Williams B.G., Raviglione M.C., et al., The growing burden of tuberculosis: global trends and interactions with the HIV epidemic, Arch. Intern. Med., 2003, 163, 1009–1021

    Article  PubMed  Google Scholar 

  39. Jarosikova T., Sow O.Y., Traore S., Krest’anpol M., Kubin M., Bruckova M., Detection of serum antibodies in tuberculosis patients, Cent. Eur. J. Public Health, 1994, 2, 60–61

    CAS  PubMed  Google Scholar 

  40. Doffinger R., Patel S.Y., Kumararatne D.S., Host genetic factors and mycobacterial infections: lessons from single gene disorders affecting innate and adaptive immunity, Microb. Infect., 2006, 8, 1141–1150

    Article  CAS  Google Scholar 

  41. Jarosikova T., Experimental mycobacterial infections in immunodeficient host, Stud. Pneumol. Phtiseol., 1993, 53, 7

    Google Scholar 

  42. El-Sadr W.M., Tsiouris S.J., HIV-associated tuberculosis: diagnostic and treatment challenges, Semin. Respir. Crit. Care Med., 2008, 29, 525–531

    Article  PubMed  Google Scholar 

  43. Diehl K., von Verscheur O., Der Erb einfluss bei den Tuberculose (The genetic influence on the tuberculosis), Gustav Fischer, Jena, 1936, (in German)

  44. Thye T., Vannberg F.O., Wong S.H., Owusu-Dabo E., Osei I., Gyapong J., et al., Genome-wide association analyses identifies a susceptibility locus for tuberculosis on chromosome 18q11.2, Nat. Genet., 2010, 42, 739–741

    Article  CAS  PubMed  Google Scholar 

  45. Alcais A., Fieschi C., Abel L., Casanova J.L., Tuberculosis in children and adults: two distinct genetic diseases, J. Exp. Med., 2005, 202, 1617–1621

    Article  CAS  PubMed  Google Scholar 

  46. Leandro A.C., Rocha M.A., Cardoso C.S., Bonecini-Almeida M.G., Genetic polymorphisms in vitamin D receptor, vitamin D-binding protein, Toll-like receptor 2, nitric oxide synthase 2, and interferon-gamma genes and its association with susceptibility to tuberculosis, Braz. J. Med. Biol. Res., 2009, 42, 312–322

    Article  CAS  PubMed  Google Scholar 

  47. Tosh K., Campbell S.J., Fielding K., Sillah J., Bah B., Gustafson P., et al., Variants in the SP110 gene are associated with genetic susceptibility to tuberculosis in West Africa, Proc. Natl. Acad. Sci. USA, 2006, 103, 10364–10368

    Article  CAS  PubMed  Google Scholar 

  48. van de Vosse E., van Dissel J.T., Ottenhoff T.H., Genetic deficiencies of innate immune signalling in human infectious disease, Lancet Infect. Dis., 2009, 9, 688–698

    Article  PubMed  Google Scholar 

  49. Yim J.J., Selvaraj P., Genetic susceptibility in tuberculosis, Respirology, 2010, 15, 241–256

    Article  PubMed  Google Scholar 

  50. Matheson C.D., Vernon K.K., Lahti A., Fratpietro R., Spigelman M., Gibson S., et al., Molecular exploration of the first-century Tomb of the Shroud in Akeldama, Jerusalem, PLoS One, 2009, 4, e8319

    Article  CAS  Google Scholar 

  51. Blackwell J.M., Jamieson S.E., Burgner D., HLA and infectious diseases, Clin. Microbiol. Rev., 2009, 22, 370–385

    Article  CAS  PubMed  Google Scholar 

  52. Vejbaesya S., Mahaisavariya P., Luangtrakool P., Sermduangprateep C., TNF alpha and NRAMP1 polymorphisms in leprosy, J. Med. Assoc. Thai., 2007, 90, 1188–1192

    PubMed  Google Scholar 

  53. Bochud P.Y., Hawn T.R., Siddiqui M.R., Saunderson P., Britton S., Abraham I., et al., Toll-like receptor 2 (TLR2) polymorphisms are associated with reversal reaction in leprosy, J. Infect. Dis., 2008, 197, 253–261

    Article  CAS  PubMed  Google Scholar 

  54. Bochud P.Y., Sinsimer D., Aderem A., Siddiqui M.R., Saunderson P., Britton S., et al., Polymorphisms in Toll-like receptor 4 (TLR4) are associated with protection against leprosy, Eur. J. Clin. Microbiol. Infect. Dis., 2009, 28, 1055–1065

    Article  CAS  PubMed  Google Scholar 

  55. Stienstra Y., van der Werf T.S., Oosterom E., Nolte I.M., van der Graaf W.T., Etuaful S., et al., Susceptibility to Buruli ulcer is associated with the SLC11A1 (NRAMP1) D543N polymorphism, Genes. Immun., 2006, 7, 185–189

    Article  CAS  PubMed  Google Scholar 

  56. Roy S., Frodsham A., Saha B., Hazra S.K., Mascie-Taylor C.G., Hill A.V., Association of vitamin D receptor genotype with leprosy type, J. Infect. Dis., 1999, 179, 187–191

    Article  CAS  PubMed  Google Scholar 

  57. Siddiqui M.R., Meisner S., Tosh K., Balakrishnan K., Ghei S., Fisher S.E., et al., A major susceptibility locus for leprosy in India maps to chromosome 10p13, Nat. Genet., 2001, 27, 439–441

    Article  CAS  PubMed  Google Scholar 

  58. Tosh K., Meisner S., Siddiqui M.R., Balakrishnan K., Ghei S., Golding M., et al., A region of chromosome 20 is linked to leprosy susceptibility in a South Indian population, J. Infect. Dis., 2002, 186, 1190–1193

    Article  CAS  PubMed  Google Scholar 

  59. Mira M.T., Alcais A., Van Thuc N., Thai V.H., Huong N.T., Ba N.N., et al., Chromosome 6q25 is linked to susceptibility to leprosy in a Vietnamese population, Nat. Genet., 2003, 33, 412–415

    Article  CAS  PubMed  Google Scholar 

  60. Mira M.T., Alcais A., Nguyen V.T., Moraes M.O., Di Flumeri C., Vu H.T., et al., Susceptibility to leprosy is associated with PARK2 and PACRG, Nature, 2004, 427, 636–640

    Article  CAS  PubMed  Google Scholar 

  61. Zhang F.R., Huang W., Chen S.M., Sun L.D., Liu H., Li Y., et al., Genomewide association study of leprosy, N. Engl. J. Med., 2009, 361, 2609–2618

    Article  CAS  PubMed  Google Scholar 

  62. Gyan B.A., Goka B., Cvetkovic J.T., Kurtzhals J.L., Adabayeri V., Perlmann H., et al., Allelic polymorphisms in the repeat and promoter regions of the interleukin-4 gene and malaria severity in Ghanaian children, Clin. Exp. Immunol., 2004, 138, 145–150

    Article  CAS  PubMed  Google Scholar 

  63. Allison A.C., Protection afforded by sickle-cell trait against subtertian malareal infection, Br. Med. J., 1954, 1, 290–294

    Article  CAS  PubMed  Google Scholar 

  64. Allison A.C., Genetic control of resistance to human malaria, Curr. Opin. Immunol., 2009, 21, 499–505

    Article  CAS  PubMed  Google Scholar 

  65. Fortier A., Min-Oo G., Forbes J., Lam-Yuk-Tseung S., Gros P., Single gene effects in mouse models of host: pathogen interactions, J. Leukoc. Biol., 2005, 77, 868–877

    Article  CAS  PubMed  Google Scholar 

  66. Kwiatkowski D., Genetic susceptibility to malaria getting complex, Curr. Opin. Genet. Dev., 2000, 10, 320–324

    Article  CAS  PubMed  Google Scholar 

  67. Ayi K., Min-Oo G., Serghides L., Crockett M., Kirby-Allen M., Quirt I., et al., Pyruvate kinase deficiency and malaria, N. Engl. J. Med., 2008, 358, 1805–1810

    Article  CAS  PubMed  Google Scholar 

  68. Mayer D.C., Cofie J., Jiang L., Hartl D.L., Tracy E., Kabat J., et al., Glycophorin B is the erythrocyte receptor of Plasmodium falciparum erythrocytebinding ligand, EBL-1, Proc. Natl. Acad. Sci. USA, 2009, 106, 5348–5352

    Article  CAS  PubMed  Google Scholar 

  69. Scott B., Easteal S., A single-step assay for the Gerbich-negative allele of glycophorin C, Blood Cells Mol. Dis., 2008, 41, 1–4

    Article  CAS  PubMed  Google Scholar 

  70. Cavasini C.E., de Mattos L.C., Couto A.A., Couto V.S., Gollino Y., Moretti L.J., et al., Duffy blood group gene polymorphisms among malaria vivax patients in four areas of the Brazilian Amazon region, Malar. J., 2007, 6, 167

    Article  PubMed  CAS  Google Scholar 

  71. Pain A., Urban B.C., Kai O., Casals-Pascual C., Shafi J., Marsh K., et al., A non-sense mutation in Cd36 gene is associated with protection from severe malaria, Lancet, 2001, 357, 1502–1503

    Article  CAS  PubMed  Google Scholar 

  72. Troye-Blomberg M., Genetic regulation of malaria infection in humans, Chem. Immunol., 2002, 80, 243–252

    Article  CAS  PubMed  Google Scholar 

  73. McGuire W., Hill A.V., Allsopp C.E., Greenwood B.M., Kwiatkowski D., Variation in the TNF-alpha promoter region associated with susceptibility to cerebral malaria, Nature, 1994, 371, 508–510

    Article  CAS  PubMed  Google Scholar 

  74. Cooke G.S., Aucan C., Walley A.J., Segal S., Greenwood B.M., Kwiatkowski D.P., et al., Association of Fcgamma receptor IIa (CD32) polymorphism with severe malaria in West Africa, Am. J. Trop. Med. Hyg., 2003, 69, 565–568

    CAS  PubMed  Google Scholar 

  75. Naka I., Patarapotikul J., Hananantachai H., Tokunaga K., Tsuchiya N., Ohashi J., IFNGR1 polymorphisms in Thai malaria patients, Infect. Genet. Evol., 2009, 9, 1406–1409

    Article  CAS  PubMed  Google Scholar 

  76. Marquet S., Doumbo O., Cabantous S., Poudiougou B., Argiro L., Safeukui I., et al., A functional promoter variant in IL12B predisposes to cerebral malaria, Hum. Mol. Genet., 2008, 17, 2190–2195

    Article  CAS  PubMed  Google Scholar 

  77. Nahrevanian H., Immune effector mechanisms of the nitric oxide pathway in malaria: cytotoxicity versus cytoprotection, Braz. J. Infect. Dis., 2006, 10, 283–292

    Article  PubMed  Google Scholar 

  78. Chakrabarti A., Kelkar D.A., Chattopadhyay A., Spectrin organization and dynamics: new insights, Biosci. Rep., 2006, 26, 369–386

    Article  CAS  PubMed  Google Scholar 

  79. Dhermy D., Schrevel J., Lecomte M.C., Spectrinbased skeleton in red blood cells and malaria, Curr. Opin. Hematol., 2007, 14, 198–202

    Article  CAS  PubMed  Google Scholar 

  80. Verra F., Mangano V.D., Modiano D., Genetics of susceptibility to Plasmodium falciparum: from classical malaria resistance genes towards genome-wide association studies, Parasite Immunol., 2009, 31, 234–253

    Article  CAS  PubMed  Google Scholar 

  81. Nagel R.L., Innate resistance to malaria: the intraerythrocytic cycle, Blood Cells, 1990, 16, 321–339

    CAS  PubMed  Google Scholar 

  82. Weatherall D.J., Phenotype-genotype relationships in monogenic disease: lessons from the thalassaemias, Nat. Rev. Genet., 2001, 2, 245–255

    Article  CAS  PubMed  Google Scholar 

  83. Cappellini M.D., Fiorelli G., Glucose-6-phosphate dehydrogenase deficiency, Lancet, 2008, 371, 64–74

    Article  CAS  PubMed  Google Scholar 

  84. Min-Oo G., Fortin A., Tam M.F., Nantel A., Stevenson M.M., Gros P., Pyruvate kinase deficiency in mice protects against malaria, Nat. Genet., 2003, 35, 357–362

    Article  CAS  PubMed  Google Scholar 

  85. Durand P.M., Coetzer T.L., Pyruvate kinase deficiency in a South African kindred caused by a 1529A mutation in the PK-LR gene, S. Afr. Med. J., 2008, 98, 456–457

    CAS  PubMed  Google Scholar 

  86. Williams T.N., Red blood cell defects and malaria, Mol. Biochem. Parasitol., 2006, 149, 121–127

    Article  CAS  PubMed  Google Scholar 

  87. Miller L.H., Mason S.J., Clyde D.F., McGinniss M.H., The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy, N. Engl. J. Med., 1976, 295, 302–304

    Article  CAS  PubMed  Google Scholar 

  88. Ryan J.R., Stoute J.A., Amon J., Dunton R.F., Mtalib R., Koros J., et al., Evidence for transmission of Plasmodium vivax among a duffy antigen negative population in Western Kenya, Am. J. Trop. Med. Hyg., 2006, 75, 575–581

    CAS  PubMed  Google Scholar 

  89. Aidoo M., Lalvani A., Allsopp C.E., Plebanski M., Meisner S.J., Krausa P., et al., Identification of conserved antigenic components for a cytotoxic T lymphocyte-inducing vaccine against malaria, Lancet, 1995, 345, 1003–1007

    Article  CAS  PubMed  Google Scholar 

  90. May J., Lell B., Luty A.J., Meyer C.G., Kremsner P.G., HLA-DQB1*0501-restricted Th1 type immune responses to Plasmodium falciparum liver stage antigen 1 protect against malaria anemia and reinfections, J. Infect. Dis., 2001, 183, 168–172

    Article  CAS  PubMed  Google Scholar 

  91. Dessein A., Chevillard C., Arnaud V., Hou X., Hamdoun A.A., Dessein H., et al., Variants of CTGF are associated with hepatic fibrosis in Chinese, Sudanese, and Brazilians infected with schistosomes, J. Exp. Med., 2009, 206, 2321–2328

    Article  CAS  PubMed  Google Scholar 

  92. Marquet S., Abel L., Hillaire D., Dessein H., Kalil J., Feingold J., et al., Genetic localization of a locus controlling the intensity of infection by Schistosoma mansoni on chromosome 5q31-q33, Nat. Genet., 1996, 14, 181–184

    Article  CAS  PubMed  Google Scholar 

  93. Dessein A., Kouriba B., Eboumbou C., Dessein H., Argiro L., Marquet S., et al., Interleukin-13 in the skin and interferon-gamma in the liver are key players in immune protection in human schistosomiasis, Immunol. Rev., 2004, 201, 180–190

    Article  CAS  PubMed  Google Scholar 

  94. Zinn-Justin A., Marquet S., Hillaire D., Dessein A., Abel L., Genome search for additional human loci controlling infection levels by Schistosoma mansoni, Am. J. Trop. Med. Hyg., 2001, 65, 754–758

    CAS  PubMed  Google Scholar 

  95. Kouriba B., Chevillard C., Bream J.H., Argiro L., Dessein H., Arnaud V., et al., Analysis of the 5q31-q33 locus shows an association between IL13-1055C/T IL-13-591A/G polymorphisms and Schistosoma haematobium infections, J. Immunol., 2005, 174, 6274–6281

    CAS  PubMed  Google Scholar 

  96. He H., Isnard A., Kouriba B., Cabantous S., Dessein A., Doumbo O., et al., A STAT6 gene polymorphism is associated with high infection levels in urinary schistosomiasis, Genes Immun., 2008, 9, 195–206

    Article  CAS  PubMed  Google Scholar 

  97. Kellina O.I., Differences in the sensitivity of inbred mice of different lines to Leishmania tropica major, Med. Parazitol. (Mosk.), 1973, 42, 279–285

    CAS  Google Scholar 

  98. Bradley D.J., Kirkley J., Variation in susceptibility of mouse strains to Leishmania donovani infection, Trans. R. Soc. Trop. Med. Hyg., 1972, 66, 527–528

    Article  CAS  PubMed  Google Scholar 

  99. Barbier D., Demenais F., Lefait J.F., David B., Blanc M., Hors J., et al., Susceptibility to human cutaneous leishmaniasis and HLA, Gm, Km markers, Tissue Antigens, 1987, 30, 63–67

    Article  CAS  Google Scholar 

  100. Lara M.L., Layrisse Z., Scorza J.V., Garcia E., Stoikow Z., Granados J., et al., Immunogenetics of human American cutaneous leishmaniasis. Study of HLA haplotypes in 24 families from Venezuela, Hum. Immunol., 1991, 30, 129–135

    Article  CAS  PubMed  Google Scholar 

  101. Cabrera M., Shaw M.A., Sharples C., Williams H., Castes M., Convit J., et al., Polymorphism in tumor necrosis factor genes associated with mucocutaneous leishmaniasis, J. Exp. Med., 1995, 182, 1259–1264

    Article  CAS  PubMed  Google Scholar 

  102. Peacock C.S., Sanjeevi C.B., Shaw M.A., Collins A., Campbell R.D., March R., et al., Genetic analysis of multicase families of visceral leishmaniasis in northeastern Brazil: no major role for class II or class III regions of HLA, Genes. Immun., 2002, 3, 350–358

    Article  CAS  PubMed  Google Scholar 

  103. Meddeb-Garnaoui A., Gritli S., Garbouj S., Ben Fadhel M., El Kares R., Mansour L., et al., Association analysis of HLA-class II and class III gene polymorphisms in the susceptibility to mediterranean visceral leishmaniasis, Hum. Immunol., 2001, 62, 509–517

    Article  CAS  PubMed  Google Scholar 

  104. Bucheton B., Abel L., El-Safi S., Kheir M.M., Pavek S., Lemainque A., et al., A major susceptibility locus on chromosome 22q12 plays a critical role in the control of kala-azar, Am. J. Hum. Genet., 2003, 73, 1052–1060

    Article  CAS  PubMed  Google Scholar 

  105. Mohamed H.S., Ibrahim M.E., Miller E.N., Peacock C.S., Khalil E.A., Cordell H.J., et al., Genetic susceptibility to visceral leishmaniasis in The Sudan: linkage and association with IL4 and IFNGR1, Genes. Immun., 2003, 4, 351–355

    Article  CAS  PubMed  Google Scholar 

  106. Sakthianandeswaren A., Foote S.J., Handman E., The role of host genetics in leishmaniasis, Trends Parasitol., 2009, 8, 383–391

    Article  CAS  Google Scholar 

  107. Lander E.S., Schork N.J., Genetic dissection of complex traits, Science, 1994, 265, 2037–2048

    Article  CAS  PubMed  Google Scholar 

  108. DeBry R.W., Seldin M.F., Human/mouse homology relationships, Genomics, 1996, 33, 337–351

    Article  CAS  PubMed  Google Scholar 

  109. Ala U., Piro R.M., Grassi E., Damasco C., Silengo L., Oti M., et al., Prediction of human disease genes by human-mouse conserved coexpression analysis, PLoS Comput. Biol., 2008, 4, e1000043

    Article  PubMed  CAS  Google Scholar 

  110. Pan H., Yan B.S., Rojas M., Shebzukhov Y.V., Zhou H., Kobzik L., et al., Ipr1 gene mediates innate immunity to tuberculosis, Nature, 2005, 434, 767–772

    Article  CAS  PubMed  Google Scholar 

  111. Beebe A.M., Mauze S., Schork N.J., Coffman R.L., Serial backcross mapping of multiple loci associated with resistance to Leishmania major in mice, Immunity, 1997, 6, 551–557

    Article  CAS  PubMed  Google Scholar 

  112. Roberts L.J., Baldwin T.M., Curtis J.M., Handman E., Foote S.J., Resistance to Leishmania major is linked to the H2 region on chromosome 17 and to chromosome 9, J. Exp. Med., 1997, 185, 1705–1710

    Article  CAS  PubMed  Google Scholar 

  113. Roberts L.J., Baldwin T.M., Speed T.P., Handman E., Foote S.J., Chromosomes X, 9, and the H2 locus interact epistatically to control Leishmania major infection, Eur. J. Immunol., 1999, 29, 3047–3050

    Article  CAS  PubMed  Google Scholar 

  114. Howard J.G., Hale C., Chan-Liew W.L., Immunological regulation of experimental cutaneous leishmaniasis. 1. Immunogenetic aspects of susceptibility to Leishmania tropica in mice, Parasite Immunol., 1980, 2, 303–314

    Article  CAS  PubMed  Google Scholar 

  115. Mock B., Blackwell J., Hilgers J., Potter M., Nacy C., Genetic control of Leishmania major infection in congenic, recombinant inbred and F2 populations of mice, Eur. J. Immunogenet., 1993, 20, 335–348

    Article  CAS  PubMed  Google Scholar 

  116. Demant P., Lipoldová M., Svobodová M., Resistance to Leishmania major in mice, Science, 1996, 274, 1392–1393

    Article  CAS  PubMed  Google Scholar 

  117. Havelkova H., Badalova J., Svobodova M., Vojtikova J., Kurey I., Vladimirov V., et al., Genetics of susceptibility to leishmaniasis in mice: four novel loci and functional heterogeneity of gene effects, Genes Immun., 2006, 7, 220–233

    Article  CAS  PubMed  Google Scholar 

  118. Kurey I., Kobets T., Havelkova H., Slapnickova M., Quan L., Trtkova K., et al., Distinct genetic control of parasite elimination, dissemination, and disease after Leishmania major infection, Immunogenetics, 2009, 61, 619–633

    Article  PubMed  Google Scholar 

  119. Lipoldová M., Svobodová M., Krulová M., Havelková H., Badalová J., Nohynková E., et al., Susceptibility to Leishmania major infection in mice: multiple loci and heterogeneity of immunopathological phenotypes, Genes Immun., 2000, 1, 200–206

    Article  PubMed  Google Scholar 

  120. Vladimirov V., Badalová J., Svobodová M., Havelková H., Hart A.A., Blažková H., et al., Different genetic control of cutaneous and visceral disease after Leishmania major infection in mice, Infect. Immun., 2003, 71, 2041–2046

    Article  CAS  PubMed  Google Scholar 

  121. Lipoldová M., Svobodová M., Havelková H., Krulová M., Badalová J., Nohynková E., et al., Mouse genetic model for clinical and immunological heterogeneity of leishmaniasis, Immunogenetics, 2002, 54, 174–183

    Article  PubMed  CAS  Google Scholar 

  122. Sakthianandeswaren A., Curtis J.M., Elso C., Kumar B., Baldwin T.M., Lopaticki S., et al., Fine mapping of Leishmania major susceptibility Locus lmr2 and evidence of a role for Fli1 in disease and wound healing, Infect. Immun., 2010, 78, 2734–2744

    Article  CAS  PubMed  Google Scholar 

  123. Gusareva E.S., Havelkova H., Blazkova H., Kosarova M., Kucera P., Kral V., et al., Mouse to human comparative genetics reveals a novel immunoglobulin E-controlling locus on Hsa8q12, Immunogenetics, 2009, 61, 15–25

    Article  CAS  PubMed  Google Scholar 

  124. Nahrevanian H., Gholizadeh J., Farahmand M., Assmar M., Sharifi K., Ayatollahi Mousavi S.A., et al., Nitric oxide induction as a novel immunoepidemiological target in malaria-infected patients from endemic areas of the Islamic Republic of Iran, Scand. J. Clin. Lab. Invest., 2006, 66, 201–209

    Article  CAS  PubMed  Google Scholar 

  125. Giovannoni L., TNFA locus is associated with beta degrees 39 thalassemia in Corsica and Sardinia, Eur. Cytokine Netw., 2008, 19, 196–203

    CAS  PubMed  Google Scholar 

  126. Badalová J., Svobodová M., Havelková H., Vladimirov V., Vojtíšková J., Engová J., et al., Separation and mapping of multiple genes that control IgE level in Leishmania major infected mice, Genes Immun., 2002, 3, 187–195

    Article  PubMed  CAS  Google Scholar 

  127. Baguet A., Epler J., Wen K.W., Bix M., A Leishmania major response locus identified by interval-specific congenic mapping of a T helper type 2 cell biascontrolling quantitative trait locus, J. Exp. Med., 2004, 200, 1605–1612

    Article  CAS  PubMed  Google Scholar 

  128. Demant P., Hart A.A., Recombinant congenic strains—a new tool for analyzing genetic traits determined by more than one gene, Immunogenetics, 1986, 24, 416–422

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taťána Jarošíková.

About this article

Cite this article

Jarošíková, T. Infectious disease — a genetic view. cent.eur.j.biol. 6, 131–144 (2011). https://doi.org/10.2478/s11535-011-0003-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-011-0003-2

Keywords

Navigation