Skip to main content
Log in

Benefit of nicorandil using an immunologic murine model of experimental colitis

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

Inflammatory bowel disease (IBD) is a chronic inflammatory condition with an unknown etiology. Nicorandil, a potassium channel opener, has been used for many years for the treatment of angina. Recently, it has been shown that nicorandil possesses some novel traits such as anti-apoptotic, gastroprotective, free radical scavenging, and anti-inflammatory properties. Therefore, we set out to examine the possible beneficial effect of nicorandil in a rat model of IBD. Colitis was induced by rectal administration of 2,4,6-trintrobenzene sulphonic acid (TNBS) into rats. Groups of animals used in this study were sham, control, and exposure to dexamethasone, nicorandil, glibenclamid (a pure adenosine triphosphate sensitive potassium channel (KATP) blocker), or nicorandil plus glibenclamid. Drugs were administered by gavage and animals were sacrificed after 7 days. Biochemical markers, including TNF-α and IL-1β, ferric reducing/antioxidant power (FRAP), myeloperoxidase (MPO) activity and thiobarbitoric acid-reactive substance (TBARS), were measured in the homogenate of colonic tissue. Results indicate that nicorandil significantly reduces macroscopic and histological damage induced by TNBS. Nicorandil diminishes MPO activity and levels of TBARS, TNF-∢, and IL-1β in damaged colonic tissue with a concomitant increase in FRAP value (P<0.01). These effects were not reversed by coadministration of glibenclamide. In conclusion, nicorandil is able to ameliorate experimental IBD with a dose in which it does not show any anti-hypertensive effect, and the mechanism of which is partially or totally independent from KATP channels. It is hypothesized that nitric oxide donation and free-radical scavenging properties of nicorandil upregulate endothelial nitric oxide synthase may be responsible for this phenomenon. These findings suggest that nicorandil can be useful in treatment of IBD, although further investigations are needed to elucidate the mechanisms involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jurjus A.R., Khoury N.N., Reimund J.M., Animal models of inflammatory bowel disease, J. Pharmacol. Toxicol. Method., 2004, 50, 81–92

    Article  CAS  Google Scholar 

  2. Rezaie A., Parker R.D., Abdollahi M., Oxidative stress and pathogenesis of inflammatory bowel disease: an epiphenomenon or the cause?, Dig. Dis. Sci., 2007, 52, 2015–2021

    Article  PubMed  Google Scholar 

  3. Blokhina O., Virolainen E., Fagerstedt K.V., Anti-oxidants, oxidative damage and oxygen deprivation stress: a review, Ann. Bot. (Lond)., 2003, 91, 179–194

    Article  CAS  Google Scholar 

  4. Middleton S.J., Shorthouse M., Hunter J.O., Increased nitric oxide synthesis in ulcerative colitis, Lancet, 1993, 341, 465–466

    Article  PubMed  CAS  Google Scholar 

  5. Panaccione R., Ferraz J.G., Beck P., Advances in medical therapy of inflammatory bowel disease, Curr. Opin. Pharmacol., 2005, 5, 566–572

    PubMed  CAS  Google Scholar 

  6. Langmead L., Rampton D.S., Review article: complementary and alternative therapies for inflammatory bowel disease, Review, Aliment. Pharmacol. Ther., 2006, 23, 341–349

    Article  CAS  Google Scholar 

  7. Ashtaral-Nakhai L., Mohammadirad A., Yasa N., Minaie B., Nikfar S., Ghazanfari G., et al., Benefits of Zataria multiflora Boiss in experimental model of mouse inflammatory bowel disease, Evid. Based Complement. Alternat. Med., 2007, 4, 43–50

    Article  Google Scholar 

  8. Ghafari H., Yasa N., Mohammadirad A., Dehghan G., Zamani M.J., Nikfar S., et al., Protection by Ziziphora clinopoides of acetic acid-induced toxic bowel inflammation through reduction of cellular lipid peroxidation and myeloperoxidase activity, Hum. Exp. Toxicol., 2006, 25, 325–332

    Article  PubMed  CAS  Google Scholar 

  9. Ghazanfari G., Minaie B., Yasa N., Nakhai L., Mohammadirad A., Nikfar S., et al., Biochemical and histopathological evidences for beneficial effects of Satureja khuzestanica jamzad essential oil on the mouse model of inflammatory bowel diseases, Toxicol. Mech. Methods, 2006, 16, 365–372

    Article  CAS  PubMed  Google Scholar 

  10. Rahimi R., Mozaffari S., Abdollahi M., On the use of herbal medicines in management of inflammatory bowel diseases: a systematic review of animal and human studies, Dig. Dis. Sci., 2008, [Epub ahead of print] (DOI 10.1007/s10620-008-0368-x)

  11. Ebrahimi F., Esmaily H., Baeeri M., Mohammadirad A., Fallah S., Abdollahi M., Molecular evidences on the benefits of N-acetylcysteine in experimental colitis, Cent. Eur. J. Biol., 2008, 3, 135–142

    Article  CAS  Google Scholar 

  12. Elahi B., Nikfar S., Derakhshani S., Vafaie M., Abdollahi M., On the benefit of probiotics in the management of pouchitis in patients underwent ileal pouch anal anastomosis: a meta-analysis of controlled clinical trials, Dig. Dis. Sci., 2007, 53, 1278–1284

    Article  PubMed  Google Scholar 

  13. Rezaie A., Taghavi Bayat B., Abdollahi M., Biologic management of fistulizing Crohn’s disease, Int. J. Pharmacol., 2005, 1, 17–24

    Article  Google Scholar 

  14. Rahimi R., Nikfar S., Rezaie A., Abdollahi M., A meta-analysis of the benefit of probiotics in maintaining remission of human ulcerative colitis: evidence for prevention of disease relapse and maintenance of remission, Arch. Med. Sci., 2008, 4, 185–190

    Google Scholar 

  15. Rahimi R, Nikfar S., Rahimi F., Elahi B., Derakhshani S., Vafaie M., et al., A meta-analysis on the efficacy of probiotics for maintenance of remission and prevention of clinical and endoscopic relapse in Crohn’s disease, Dig. Dis. Sci., 2008, 53, 2524–2531

    Article  PubMed  Google Scholar 

  16. Rahimi R., Nikfar S., Rezaie A., Abdollahi M., A meta-analysis of antibiotic therapy for active ulcerative colitis, Dig. Dis. Sci., 2007, 52, 2920–2925

    Article  PubMed  CAS  Google Scholar 

  17. Rahimi R., Nikfar S., Rezaie A., Abdollahi M., A meta-analysis of broad spectrum antibiotic therapy in patients with active Crohn’s disease, Clin. Ther., 2006, 28, 1983–1988

    Article  PubMed  CAS  Google Scholar 

  18. Dubinsky M.C., Targeting Therapy in Pediatric Inflammatory Bowel Disease, Curr. Treat. Options Gastroenterol., 2004, 7, 391–405

    Article  PubMed  Google Scholar 

  19. Akai K., Wang Y., Sato K., Sekiguchi N., Sugimura A., Kumagai T., et al., Vasodilatory effect of nicorandil on coronary arterial microvessels: its dependency on vessel size and the involvement of the ATP-sensitive potassium channels, J. Cardiovasc. Pharmacol., 1995, 26, 541–547

    Article  PubMed  CAS  Google Scholar 

  20. Hosseini-Tabatabaei A., Abdollahi M., Potassium channel openers and improvement of toxic stress: Do they have role in the management of Inflammatory bowel disease?, Inflamm. Allergy Drug Targets, 2008, 7, 129–135

    Article  PubMed  CAS  Google Scholar 

  21. Heywood G.J., Thomas P.S., Nicorandil inhibits degranulation and TNF-alpha release from RBL-2H3 cells, Inflamm. Res., 2002, 51, 176–181

    Article  PubMed  CAS  Google Scholar 

  22. Facundo H.T., De Paula J.G., Kowaltowski A.J., Mitochondrial ATP-sensitive K+ channels are redox-sensitive pathways that control reactive oxygen species production, Free Radic. Biol. Med., 2007, 42, 1039–1048

    Article  PubMed  CAS  Google Scholar 

  23. Facundo H.T., De Paula J.G, Kowaltowski A.J., Mitochondrial ATP-sensitive K+ channels prevent oxidative stress, permeability transition and cell death, J. Bioenerg. Biomembr., 2005, 37, 75–82

    Article  PubMed  CAS  Google Scholar 

  24. Wang Y.P., Maeta H., Mizoguchi K., Suzuki T., Yamashita Y., Oe M., Intestinal ischemia preconditions myocardium: role of protein kinase C and mitochondrial K(ATP) channel, Cardiovasc. Res., 2002, 55, 576–582

    Article  PubMed  CAS  Google Scholar 

  25. Teshima Y., Akao M., Baumgartner W.A., Marbán E., Nicorandil prevents oxidative stress-induced apoptosis in neurons by activating mitochondrial ATP-sensitive potassium channels, Brain. Res., 2003, 990, 45–50

    Article  PubMed  CAS  Google Scholar 

  26. Akao M., Teshima Y., Marbán E., Antiapoptotic effect of nicorandil mediated by mitochondrial atpsensitive potassium channels in cultured cardiac myocytes, J. Am. Coll. Cardiol., 2002, 40, 803–810

    Article  PubMed  CAS  Google Scholar 

  27. Nagata K., Obata K., Odashima M., Yamada A., Somura F., Nishizawa T., et al., Nicorandil inhibits oxidative stress-induced apoptosis in cardiac myocytes through activation of mitochondrial ATP-sensitive potassium channels and a nitrate-like effect, J. Mol. Cell. Cardiol., 2003, 35, 1505–1512

    Article  PubMed  CAS  Google Scholar 

  28. Xu J., Nagata K., Obata K., Ichihara S., Izawa H., Noda A., et al., Nicorandil promotes myocardial capillary and arteriolar growth in the failing heart of Dahl salt-sensitive hypertensive rats, Hypertension, 2005, 46, 719–724

    Article  PubMed  CAS  Google Scholar 

  29. Ismail H.A., Khalifa M.M., Hassan M.K., Ashour O.M., Insights in the mechanisms underlying the anti-ulcer activity of nicorandil, Pharmazie, 2007, 62, 60–67

    PubMed  CAS  Google Scholar 

  30. Mourelle M., Vilaseca J., Guarner F., Salas A., Malagelada J.R., Toxic dilatation of colon in a rat model of colitis is linked to an inducible form of nitric oxide synthase, Am. J. Physiol., 1996, 270, G425–G430

    PubMed  CAS  Google Scholar 

  31. Abdollahi M., Dehpour A.R., Baharnouri G., Alteration by rubidium of rat submandibular secretion of protein and N-acetyl-D-glucosaminidase, Tox. Subst. Mech., 1998, 17, 121–131

    Article  CAS  Google Scholar 

  32. Wallace J.L., Keenan C.M., Gale D., Shoupe T.S., Exacerbation of experimental colitis by nonsteroidal anti-inflammatory drugs is not related to elevated leukotriene B4 synthesis, Gastroenterology, 1992, 102, 18–27

    PubMed  CAS  Google Scholar 

  33. Mustafa A., El-Medany A., Hagar H.H., El-Medany G., Ginkgo biloba attenuates mucosal damage in a rat model of ulcerative colitis, Pharmacol. Res., 2006, 53, 324–330

    Article  PubMed  CAS  Google Scholar 

  34. Cuzzocrea S., Ianaro A., Wayman N.S., Mazzon E., Pisano B., Dugo L., et al., The cyclopentenone prostaglandin 15-deoxy-delta(12,14)-PGJ2 attenuates the development of colon injury caused by dinitrobenzene sulphonic acid in the rat, Br. J. Pharmacol., 2003, 138, 678–688

    Article  PubMed  CAS  Google Scholar 

  35. Dehghan G., Shafiee A., Ghahremani M.H., Ardestani S.K., Abdollahi M., Antioxidant potential of various extracts from Ferula szovitsiana in relation to their phenolic content, Pharm. Biol., 2007, 45, 691–699

    Article  CAS  Google Scholar 

  36. Astaneie F., Afshari M., Mojtahedi A., Mostafalou S., Zamani M.J., Larijani B., et al., Total antioxidant capacity and levels of epidermal growth factor and nitric oxide in blood and saliva of insulin-dependent diabetic patients, Arch. Med. Res., 2005, 36, 376–381

    Article  PubMed  CAS  Google Scholar 

  37. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, 193, 265–275

    PubMed  CAS  Google Scholar 

  38. Torres M.I., García-Martin M., Fernández M.I., Nieto N., Gil A., Ríos A., Experimental colitis induced by trinitrobenzenesulfonic acid: an ultrastructural and histochemical study, Dig. Dis. Sci., 1999, 44, 2523–2529

    Article  PubMed  CAS  Google Scholar 

  39. Kolgazi M., Jahovic N., Yuksel M., Ercan F., Alican I., α-lipoic acid modulates gut inflammation induced by trinitrobenzene sulfonic acid in rats, J. Gastroenterol. Hepatol., 2007, 22, 1859–1865

    Article  PubMed  CAS  Google Scholar 

  40. Shen C., De Hertogh G., Bullens D.M., Van Assche G., Geboes K., Rutgeerts P., et al., Remission-inducing effect of anti-TNF monoclonal antibody in TNBS colitis: mechanisms beyond neutralization?, Inflamm. Bowel. Dis., 2007, 13, 308–316

    Article  PubMed  Google Scholar 

  41. Rahimi R., Nikfar S., Abdollahi M., Do anti-tumor necrosis factors induce response and remission in patients with acute refractory Crohn’s disease? A systematic meta-analysis of controlled clinical trials, Biomed. Pharmacother., 2007, 61, 75–80

    Article  PubMed  CAS  Google Scholar 

  42. Rahimi R., Nikfar S., Abdollahi M., Meta-analysis technique confirms the effectiveness of anti-TNF-a in the management of active ulcerative colitis when administered in combination with corticosteroids, Med. Sci. Monitor., 2007, 13, PI13–PI18

    CAS  Google Scholar 

  43. Ludwiczek O., Vannier E., Borggraefe I., Kaser A., Siegmund B., Dinarello C.A., et al., Imbalance between interleukin-1 agonists and antagonists: relationship to severity of inflammatory bowel disease, Clin. Exp. Immunol., 2004, 138, 323–329

    Article  PubMed  CAS  Google Scholar 

  44. Simmonds N.J., Rampton D.S., Inflammatory bowel disease—a radical view, Gut, 1993, 34, 865–868

    Article  PubMed  CAS  Google Scholar 

  45. Suzuki M., Saito T., Sato T., Tamagawa M., Miki T., Seino S., Nakaya H., Cardioprotective effect of diazoxide is mediated by activation of sarcolemmal but not mitochondrial ATP-sensitive potassium channels in mice, Circulation, 2003, 107, 682–685

    Article  PubMed  CAS  Google Scholar 

  46. Hanley P.J., Daut J., K(ATP) channels and preconditioning: a re-examination of the role of mitochondrial K(ATP) channels and an overview of alternative mechanisms, J. Mol. Cell. Cardiol., 2005, 39, 17–50

    Article  PubMed  CAS  Google Scholar 

  47. Inoue I., Nagase H., Kishi K., Higuti T., ATP-sensitive K+ channel in the mitochondrial inner membrane, Nature, 1991, 352, 244–247

    Article  PubMed  CAS  Google Scholar 

  48. Deby-Dupont G., Deby C., Lamy M., Neutrophil myeloperoxidase revisited: its role in health and disease, Intensivmed., 1999, 36, 500–551

    Article  Google Scholar 

  49. Kruidenier L., Kuiper I., Van Duijn W., Mieremet-Ooms M.A., van Hogezand R.A., Lamers C.B., et al., Imbalanced secondary mucosal antioxidant response in inflammatory bowel disease, J. Pathol., 2003, 201, 17–27

    Article  PubMed  CAS  Google Scholar 

  50. Kruidenier L., Kuiper I., Lamers C.B., Verspaget H.W., Intestinal oxidative damage in inflammatory bowel disease: semi-quantification, localization, and association with mucosal antioxidants, J. Pathol., 2003, 201, 28–36

    Article  PubMed  CAS  Google Scholar 

  51. Ahmed A.O., Sharifzadeh M., Nikfar S., Jamshidi H.R., Abdollahi M., Prevention by L-arginine/nitric oxide of chlordiazepoxide-induced toxic reactions in the rat salivary gland, Toxicol. Mech. Method., 2006, 16, 331–337

    Article  CAS  Google Scholar 

  52. Abdollahi M., Dehpour A.R., Shafayee F., L-Arginine/nitric oxide pathway and interaction with lead acetate on rat submandibulary gland function, Pharmacol. Toxicol., 2000, 87, 198–203

    Article  PubMed  CAS  Google Scholar 

  53. Kolios G., Valatas V., Ward S.G., Nitric oxide in inflammatory bowel disease: a universal messenger in an unsolved puzzle, Immunology, 2004, 113, 427–437

    Article  PubMed  CAS  Google Scholar 

  54. Barrachina M.D., Panes J., Esplugues J.V., Role of nitric oxide in gastrointestinal inflammatory and ulcerative diseases: perspective for drugs development, Curr. Pharm. Des., 2001, 7, 31–48

    Article  PubMed  CAS  Google Scholar 

  55. Jahanshahi G., Motavasel V., Rezaie A., Hashtroudi A.A., Daryani N.E., Abdollahi M., Alterations in antioxidant power and levels of epidermal growth factor and nitric oxide in saliva of patients with inflammatory bowel diseases, Dig. Dis. Sci., 2004, 49, 1752–1757

    Article  PubMed  CAS  Google Scholar 

  56. Horinaka S., Kobayashi N., Yabe A., Asakawa H., Yagi H., Mori Y., et al., Nicorandil protects against lethal ischemic ventricular arrhythmias and up-regulates endothelial nitric oxide synthase expression and sulfonylurea receptor 2 mRNA in conscious rats with acute myocardial infarction, Cardiovasc. Drugs Ther., 2004, 18, 13–22

    Article  PubMed  CAS  Google Scholar 

  57. Horinaka S., Kobayashi N., Higashi T., Hara K., Hara S., Matsuoka H., Nicorandil enhances cardiac endothelial nitric oxide synthase expression via activation of adenosine triphosphate-sensitive K channel in rat, J. Cardiovasc. Pharmacol., 2001, 38, 200–210

    Article  PubMed  CAS  Google Scholar 

  58. Pompermayer K., Souza D.G., Lara G.G., Silveira K.D., Cassali G.D., Andrade A.A., et al., The ATPsensitive potassium channel blocker glibenclamide prevents renal ischemia/reperfusion injury in rats, Kidney Int., 2005, 67, 1785–1796

    Article  PubMed  CAS  Google Scholar 

  59. Pompermayer K., Amaral F.A., Fagundes C.T., Vieira A.T., Cunha F.Q., Teixeira M.M., et al., Effects of the treatment with glibenclamide, an ATP-sensitive potassium channel blocker, on intestinal ischemia and reperfusion injury, Eur. J. Pharmacol., 2007, 556, 215–222

    Article  PubMed  CAS  Google Scholar 

  60. Flavio A.G., Cunha F.Q., Francescato H.D., Soares T.J., Costa R.S., Barbosa Junior F., et al., ATP-sensitive potassium channel blockage attenuates cisplatin-induced renal damage, Kidney Blood Press. Res., 2007, 30, 289–298

    Article  PubMed  CAS  Google Scholar 

  61. Sarkhail P., Rahmanipour S., Fadyevatan S., Mohammadirad A., Dehghan G., Amin G., et al., Antidiabetic effect of Phlomis anisodonta: Effects on hepatic cells lipid peroxidation and antioxidant enzymes in experimental diabetes, Pharmacol. Res., 2007, 56, 261–266

    Article  PubMed  CAS  Google Scholar 

  62. Cocks T.M., King S.J., Angus J.A., Glibenclamide is a competitive antagonist of the thromboxane A2 receptor in dog coronary artery in vitro, Br. J. Pharmacol., 1990, 100, 375–378

    PubMed  CAS  Google Scholar 

  63. Rampton D.S., Collins C.E., Review article: thromboxanes in inflammatory bowel disease—pathogenic and therapeutic implications, Aliment. Pharmacol. Ther., 1993, 7, 357–367

    Article  PubMed  CAS  Google Scholar 

  64. Reichert S., Antunes A., Tréchot P., Barbaud A., Weber M., Schmutz J.L., Major aphthous stomatitis induced by nicorandil, Eur. J. Dermatol., 1997, 7, 132–133

    Google Scholar 

  65. Watson A., Al-Ozairi O., Fraser A., Loudon M., O’Kelly T., Nicorandil associated anal ulceration, Lancet, 2002, 360, 546–547

    Article  PubMed  CAS  Google Scholar 

  66. McKenna D.J., Donnelly J., Armstrong D.K., Nicorandil-induced leg ulceration, Br. J. Dermatol., 2007, 156, 394–396

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Abdollahi.

About this article

Cite this article

Hosseini-Tabatabaei, A., Esmaily, H., Rahimian, R. et al. Benefit of nicorandil using an immunologic murine model of experimental colitis. cent.eur.j.biol. 4, 74–85 (2009). https://doi.org/10.2478/s11535-008-0047-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-008-0047-0

Keywords

Navigation