Skip to main content
Log in

Path integral treatment of a noncentral electric potential

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

We present a rigorous path integral treatment of a dynamical system in the axially symmetric potential \(V(r,\theta ) = V(r) + \tfrac{1} {{r^2 }}V(\theta ) \). It is shown that the Green’s function can be calculated in spherical coordinate system for \(V(\theta ) = \frac{{\hbar ^2 }} {{2\mu }}\frac{{\gamma + \beta \sin ^2 \theta + \alpha \sin ^4 \theta }} {{\sin ^2 \theta \cos ^2 \theta }} \). As an illustration, we have chosen the example of a spherical harmonic oscillator and also the Coulomb potential for the radial dependence of this noncentral potential. The ring-shaped oscillator and the Hartmann ring-shaped potential are considered as particular cases. When α = β = γ = 0, the discrete energy spectrum, the normalized wave function of the spherical oscillator and the Coulomb potential of a hydrogen-like ion, for a state of orbital quantum number l ≥ 0, are recovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Hartmann, Theor. Chim. Acta 24, 201 (1972)

    Article  Google Scholar 

  2. H. Hartmann, R. Schuck, J. Radtke, Theor. Chim. Acta 42, 1 (1976)

    Article  Google Scholar 

  3. H. Hartmann, D. Schuch, Int. J. Quantum Chem. 18, 125 (1980)

    Article  Google Scholar 

  4. C. Quesne, J. Phys. A 21, 3093 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. M.V. Carpio, A. Inomata, In: Path integrals from meV to MeV, eds. M.C. Gutzwiller, A. Inomata, J. Klauder, L. Streit (World Scientific, Singapore, 1986) 261

    Google Scholar 

  6. I. Sokmen, Phys. Lett. A 115, 249 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  7. L. Chetouani, L. Guechi, T. F. Hammann, Phys. Lett. A 125, 277 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  8. M. Kibler, T. Negadi, Int. J. Quantum Chem. 26, 405 (1984)

    Article  Google Scholar 

  9. C.C. Gerry, Phys. Lett. A 118, 445 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  10. M. Kibler, P. Winternitz, J. Phys. Math. Gen. 20, 4097 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. A. Guha, S. Mukherjee, J. Math. Phys. 28, 840 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. A.N. Vaidya, H. Boschi Filho, J. Math. Phys. 31, 1951 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. L. Chetouani, L. Guechi, T. F. Hammann, J. Math. Phys. 33, 3410 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. A.A. Makarov, J.A. Smorodinsky, Kh. Valiev, P. Winternitz, Nuovo Cimento A 52, 1061 (1967)

    Article  ADS  Google Scholar 

  15. N.W. Evans, Phys. Lett. A 147, 483 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  16. N.W. Evans, Phys. Rev. A 41, 5666 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  17. N.W. Evans, J. Math. Phys. 31, 600 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. C. Grosche, G.S. Pogosyan, A.N. Sissakian, Fortschr. Phys. 43, 453 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Chetouani, L. Guechi, T. F. Hammann, J. Math. Phys. 42, 4684 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. C. Berkdemir, J. Math. Chem. 46, 139 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. M.C. Zhang, G.H. Sun, S.H. Dong, Phys. Lett. A 374, 704 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. A. Arda, R. Sever, J. Math. Chem. 50, 1484 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. I.H. Duru, Phys. Rev. D 30, 2121 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  24. M. Bohm, G. Junker, J. Math. Phys. 28, 1978 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  25. L. Chetouani, L. Guechi, M. Letlout, T.F. Hammann, Nuovo Cimento B 105, 387 (1990)

    Article  ADS  Google Scholar 

  26. I.S. Gradshtein, I.M. Ryzhik, Tables of Integrals, Series and Products (Academic Press, New York, 1965)

    Google Scholar 

  27. B.S. Dewitt, Rev. Mod. Phys. 29, 377 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. D.W. Mc Laughlin, L.S. Schulman, J. Math. Phys. 12, 2520 (1971)

    Article  ADS  Google Scholar 

  29. I.H. Duru, H. Kleinert, Phys. Lett. B 84, 185 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  30. I.H. Duru, H. Kleinert, Fortschr. Phys., 30, 401 (1982)

    Article  MathSciNet  Google Scholar 

  31. D. Peak, A. Inomata, J. Math. Phys. 10, 1422 (1969)

    Article  MathSciNet  ADS  Google Scholar 

  32. M.V. Carpio-Bernido, C.C. Bernido, Phys. Lett. A 134, 395 (1989)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larbi Guechi.

About this article

Cite this article

Ghoumaid, A., Benamira, F., Guechi, L. et al. Path integral treatment of a noncentral electric potential. centr.eur.j.phys. 11, 78–88 (2013). https://doi.org/10.2478/s11534-012-0125-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-012-0125-9

Keywords

Navigation