Skip to main content
Log in

A Q-Ising model application for linear-time image segmentation

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

A computational method is presented which efficiently segments digital grayscale images by directly applying the Q-state Ising (or Potts) model. Since the Potts model was first proposed in 1952, physicists have studied lattice models to gain deep insights into magnetism and other disordered systems. For some time, researchers have realized that digital images may be modeled in much the same way as these physical systems (i.e., as a square lattice of numerical values). A major drawback in using Potts model methods for image segmentation is that, with conventional methods, it processes in exponential time. Advances have been made via certain approximations to reduce the segmentation process to power-law time. However, in many applications (such as for sonar imagery), real-time processing requires much greater efficiency. This article contains a description of an energy minimization technique that applies four Potts (Q-Ising) models directly to the image and processes in linear time. The result is analogous to partitioning the system into regions of four classes of magnetism. This direct Potts segmentation technique is demonstrated on photographic, medical, and acoustic images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Pham, C. Xu, J. L. Prince, Annu. Rev. Biomed. Eng. 2, 315 (2000)

    Article  Google Scholar 

  2. Y. H. Yang, M. J. Buckley, S. Dudoit, T. P. Speed, J. Comput. Graph. Stat. 11, 108 (2002)

    Article  MathSciNet  Google Scholar 

  3. S. Peng, B. Urbanc, L. Cruz, B. T. Hyman, H. E. Stanley, P. Natl. Acad. Sci. USA 100, 3847 (2003)

    Article  ADS  Google Scholar 

  4. V. Grau, A. U. J. Mewes, M. Alcañiz, IEEE T. Med. Imaging 23, 447 (2004)

    Article  Google Scholar 

  5. S. Hadjidemetriou, C. Studholme, S. Mueller, M. Weiner, N. Schuff, Med. Image Anal. 13, 36–48 (2009)

    Article  Google Scholar 

  6. X. Descombes, M. Moctezuma, H. Maître, J.-P. Rudant, Signal Process. 55, 123–132 (1996)

    Article  MATH  Google Scholar 

  7. F. W. Bentrem, W. E. Avera, J. Sample, Sea Technol. 47, 37 (2006)

    Google Scholar 

  8. T. Asano, D. Z. Chen, N. Katoh, T. Tokuyama, Int. J. Comput. Geom. Ap. 11, 145 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. E. Ising, Z. Phys. 31, 253 (1925)

    Article  ADS  Google Scholar 

  10. R. B. Potts, P. Camb. Philos. Soc. 48, 106 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  11. F. W. Bentrem, Provisional Patent Application, Navy Case No. 99, 755 (2009)

  12. K. Tanaka, J. Phys. A-Math. Gen. 35, R81 (2002)

    Article  MATH  ADS  Google Scholar 

  13. J. P. Neirotti, S. M. Kurcbart, N. Caticha, Phys. Rev. E 68, 031911 (2003)

    Article  ADS  Google Scholar 

  14. M. Blatt, S. Wiseman, E. Domany, Phys. Rev. Lett. 76, 3251 (1996)

    Article  ADS  Google Scholar 

  15. M. Blatt, S. Wiseman, E. Domany, Neural Computation 9, 1805 (1997)

    Article  Google Scholar 

  16. S. Wiseman, M. Blatt, E. Domany, Phys. Rev. E 57, 3767 (1998)

    Article  ADS  Google Scholar 

  17. K. Tanaka, H. Shouno, M. Okadak, D. M. Titterington, J. Phys. A-Math. Gen. 37, 8675 (2004)

    Article  MATH  ADS  Google Scholar 

  18. E. Sharon, A. Brandt, R. Basriy, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, Hilton Head Island, 2000) 1, 70

    Google Scholar 

  19. P. F. Felzenszwalb, D. P. Huttenlocher, Int. J. Comput. Vision 59, 167 (2004)

    Article  Google Scholar 

  20. A. X. Falcão, P. A. V. Miranda, A. Rocha, Lect. Notes Comp. Sci. 4179/2006, 138 (2006)

    Article  Google Scholar 

  21. D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, New York, 1987)

    Google Scholar 

  22. J. C. Lee Thermal Physics: Entropy and Free Energies (World Scientific Publishing Company, Singapore, 2002)

    Google Scholar 

  23. L. Onsager, Phys. Rev. 65, 117 (1944)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. D. Martin, C. Fowlkes, D. Tal, J. Malik, Proceedings of the 8th International Conference on Computer Vision 2, 416 (2001)

    Google Scholar 

  25. F. W. Bentrem, J. Sample, M. T. Kalcic, M. E. Duncan, Proceedings of Oceans 2002 (MTS/IEEE, Biloxi) 1, 7 (2002)

    Google Scholar 

  26. F. W. Bentrem, J. T. Sample, M. M. Harris, Scientific Computing 25, 30 (2008)

    Google Scholar 

  27. R. A. Bagnold, The Physics of Blown Sand and Desert Dunes (Methuen, London, 1941)

    Google Scholar 

  28. L. Kang, L. Guo, Phys. Lett. A 330, 198 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank W. Bentrem.

About this article

Cite this article

Bentrem, F.W. A Q-Ising model application for linear-time image segmentation. centr.eur.j.phys. 8, 689–698 (2010). https://doi.org/10.2478/s11534-009-0165-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-009-0165-y

Keywords

Navigation