Skip to main content
Log in

Adaptive multiscale scheme based on numerical density of entropy production for conservation laws

Central European Journal of Mathematics

Abstract

We propose a 1D adaptive numerical scheme for hyperbolic conservation laws based on the numerical density of entropy production (the amount of violation of the theoretical entropy inequality). This density is used as an a posteriori error which provides information if the mesh should be refined in the regions where discontinuities occur or coarsened in the regions where the solution remains smooth. As due to the Courant-Friedrich-Levy stability condition the time step is restricted and leads to time consuming simulations, we propose a local time stepping algorithm. We also use high order time extensions applying the Adams-Bashforth time integration technique as well as the second order linear reconstruction in space. We numerically investigate the efficiency of the scheme through several test cases: Sod’s shock tube problem, Lax’s shock tube problem and the Shu-Osher test problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Allahviranloo T., Ahmady N., Ahmady E., Numerical solution of fuzzy differential equations by predictor-corrector method, Inform. Sci., 2007, 177(7), 1633–1647

    Article  MathSciNet  MATH  Google Scholar 

  2. Altmann C., Belat T., Gutnic M., Helluy P., Mathis H., Sonnendrücker É., Angulo W., Hérard J.-M., A local timestepping discontinuous Galerkin algorithm for the MHD system, In: CEMRACS 2008 — Modelling and Numerical Simulation of Complex Fluids, Marseille, July 21–August 29, 2008, ESAIM Proc., 28, EDP Sciences, Les Ulis, 2009, 33–54

    Google Scholar 

  3. Berger M.J., Oliger J., Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys., 1984, 53(3), 484–512

    Article  MathSciNet  MATH  Google Scholar 

  4. Cockburn B., Gremaud P.-A., A priori error estimates for numerical methods for scalar conservation laws. Part II: Flux-splitting monotone schemes on irregular Cartesian grids, Math. Comp., 1997, 66(218), 547–572

    Article  MathSciNet  MATH  Google Scholar 

  5. Croisille J.-P., Contribution à l’Étude Théorique et à l’Approximation par Éléments Finis du Système Hyperbolique de la Dynamique des Gaz Multidimensionnelle et Multiespèces, PhD thesis, Université de Paris VI, 1991

    Google Scholar 

  6. Eymard R., Gallouët T., Herbin R., Finite Volume Methods, In: Handbook of Numerical Analysis, VII, Handb. Numer. Anal., VII, North-Holland, Amsterdam, 2000, 713–1020

    Google Scholar 

  7. Gallouët T., Hérard J.-M., Seguin N., Some recent finite volume schemes to compute Euler equations using real gas EOS, Internat. J. Numer. Methods Fluids, 2002, 39(12), 1073–1138

    Article  MathSciNet  MATH  Google Scholar 

  8. Godlewski E., Raviart P.-A., Numerical Approximation of Hyperbolic Systems of Conservation Laws, Appl. Math. Sci., 118, Springer, New York, 1996

    MATH  Google Scholar 

  9. Golay F., Numerical entropy production and error indicator for compressible flows, Comptes Rendus Mécanique, 2009, 337(4), 233–237

    Article  MATH  Google Scholar 

  10. Guermond J.-L., Pasquetti R., Popov B., Entropy viscosity method for nonlinear conservation laws, J. Comput. Phys., 2011, 230(11), 4248–4267

    Article  MathSciNet  MATH  Google Scholar 

  11. Hairer E., Nørsett S.P., Wanner G., Solving Ordinary Differential Equations. I, 2nd ed., Springer Ser. Comput. Math., 8, Springer, Berlin, 1993

    MATH  Google Scholar 

  12. Houston P., Mackenzie J.A., Süli E., Warnecke G., A posteriori error analysis for numerical approximations of Friedrichs systems, Numer. Math., 1999, 82(3), 433–470

    Article  MathSciNet  MATH  Google Scholar 

  13. Jenny P., Lee S.H., Tchelepi H.A., Adaptive multiscale finite-volume method for multiphase flow and transport in porous media, Multiscale Model. Simul., 2005, 3(1), 50–64

    Article  Google Scholar 

  14. Karni S., Kurganov A., Local error analysis for approximate solutions of hyperbolic conservation laws, Adv. Comput. Math., 2005, 22(1), 79–99

    Article  MathSciNet  MATH  Google Scholar 

  15. Karni S., Kurganov A., Petrova G., A smoothness indicator for adaptive algorithms for hyperbolic systems, J. Comput. Phys., 2002, 178(2), 323–341

    Article  MathSciNet  MATH  Google Scholar 

  16. Müller S., Stiriba Y., Fully adaptive multiscale schemes for conservation laws employing locally varying time stepping, J. Sci. Comput., 2007, 30(3), 493–531

    Article  MathSciNet  MATH  Google Scholar 

  17. Osher S., Sanders R., Numerical approximations to nonlinear conservation laws with locally varying time and space grids, Math. Comp., 1983, 41(164), 321–336

    Article  MathSciNet  MATH  Google Scholar 

  18. Puppo G., Numerical entropy production on shocks and smooth transitions, J. Sci. Comput., 2002, 17(1–4), 263–271

    Article  MathSciNet  MATH  Google Scholar 

  19. Puppo G., Numerical entropy production for central schemes, SIAM J. Sci. Comput., 2004, 25(4), 1382–1415

    Article  MathSciNet  Google Scholar 

  20. Puppo G., Semplice M., Numerical entropy and adaptivity for finite volume schemes, Commun. Comput. Phys., 2011, 10(5), 1132–1160

    MathSciNet  Google Scholar 

  21. Shu C.-W., Osher S., Efficient implementation of essentially nonoscillatory shock-capturing schemes, J. Comput. Phys., 1988, 77(2), 439–471

    Article  MathSciNet  MATH  Google Scholar 

  22. Simeoni C., Remarks on the consistency of upwind source at interface schemes on nonuniform grids, J. Sci. Comput., 2011, 48(1–3), 333–338

    Article  MathSciNet  MATH  Google Scholar 

  23. Sod G.A., A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys., 1978, 27(1), 1–31

    Article  MathSciNet  MATH  Google Scholar 

  24. Sonar T., Hannemann V., Hempel D. Dynamic adaptivity and residual control in unsteady compressible flow computation, In: Theory and Numerical Methods for Initial-Boundary Value Problems, Math. Comput. Modelling, 1994, 20(10–11), 201–213

    Article  MathSciNet  MATH  Google Scholar 

  25. Tan Z., Zhang Z., Huang Y., Tang T., Moving mesh methods with locally varying time steps, J. Comput. Phys., 2004, 200(1), 347–367

    Article  MathSciNet  MATH  Google Scholar 

  26. Tang H., Warnecke G., A class of high resolution difference schemes for nonlinear Hamilton-Jacobi equations with varying time and space grids, SIAM J. Sci. Comput., 2005, 26(4), 1415–1431

    Article  MathSciNet  MATH  Google Scholar 

  27. Toro E.F., Riemann Solvers and Numerical Methods for Fluid Dynamics, 2nd ed., Springer, Berlin, 1999

    Book  MATH  Google Scholar 

  28. Zhang X.D., Trépanier J.-Y., Camarero R., A posteriori error estimation for finite-volume solutions of hyperbolic conservation laws, Comput. Methods Appl. Engrg., 2000, 185(1), 1–19

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Ersoy.

About this article

Cite this article

Ersoy, M., Golay, F. & Yushchenko, L. Adaptive multiscale scheme based on numerical density of entropy production for conservation laws. centr.eur.j.math. 11, 1392–1415 (2013). https://doi.org/10.2478/s11533-013-0252-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11533-013-0252-6

MSC

Keywords

Navigation