Skip to main content
Log in

Investigation of SOFC material properties for plant-level modeling

  • Invited Paper
  • Published:
Central European Journal of Chemistry

Abstract

This article describes results of a recent study of SOFC (Solid Oxide Fuel Cell) material properties using a numerical tool. The created model was validated against experimental data collected for two different solid oxide fuel cells. With focus on ionic and electronic conductivities, temperature influence was investigated. Results are presented, compared with available data, and discussed.

Model of a micro-CHP (Combined Heat and Power) unit based on a SOFC stack was used for evaluation of system performance with different cells. On-site generated bio-syngas was considered as a fuel fed for the unit.

The overall system efficiency was analyzed using an Aspen HYSYS modeling environment. Properties of two generic electrolyte materials were implemented in the models for evaluation of a co-generative unit operation. Electrical and overall efficiencies of systems based on those cells were compared and differences were observed. Micro-scale power units with fuel cells are a promising technology for highly efficient distributed cogeneration. As it was concluded, selection of a proper cell is crucial to assure high system efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Directive 2004/8/EC of the European Parliament and of the Council of 11 February 2004 on the promotion of cogeneration based on a useful heat demand in the internal energy market (European Commission, Strasbourg, 2004)

  2. L. Barelli, G. Bidini, F. Gallorini, A. Ottaviano, Int. J. Hydrogen Energy36, 3206 (2011)

  3. J. Kupecki, J. Jewulski, K. Badyda, Rynek Energii 97, 157 (2011) (in Polish)

    Google Scholar 

  4. E.I. Zolias, N. Lymberopoulos (Eds.), Autonomous Power Systems (Springer-Verlag, London, 2008)

    Google Scholar 

  5. T. Tanaka, Y. Inui, A. Urata, T. Kanno, Energy Conversion and Management 48, 1491 (2007)

    Article  CAS  Google Scholar 

  6. M. Iwata, T. Hikosaka, M. Morita, T. Iwanari, K. Ito, K. Onda et al., Solid State Ionics 132, 297 (2000)

    Article  CAS  Google Scholar 

  7. K.J. Kattke, R.J. Braun, A.M. Colclasure, G. Goldin G, Journal of Power Sources 196, 3790 (2011)

    Article  CAS  Google Scholar 

  8. J. Milewski, A. Miller, J. Salacinski, Int. J. Hydrogen Energy 32, 687 (2007)

    Article  CAS  Google Scholar 

  9. Y. Jiang, A.V. Virkar, J. of Electrochemical Soc. Vol 148 (2001)

  10. US Department of Energy, National Energy Technology Laboratory, Fuel Cell Handbook, 7th edition (EG&G Technical Services Inc., Morgantown, 2004)

    Google Scholar 

  11. J. Kupecki, Integrated Gasification SOFC Hybrid Power System Modeling: Novel numerical approach to modeling of advanced power systems, (VDM Verlag Dr. Muller, Saarbrucken, 2010)

    Google Scholar 

  12. H. Yokokawa, Annual Review of Materials Research 33, 581 (2003)

    Article  CAS  Google Scholar 

  13. R. O’Hayre, S.W. Cha, W. Colella, F. Prinz, Fuel cell fundamentals (Wiley, New York, 2005)

    Google Scholar 

  14. J. Milewski, J. Lewandowski, Archives of Thermodynamics 30, 4 (2009)

    Google Scholar 

  15. J. Staniforth, R.M. Ormerod, Ionics 9(5–6), 336 (2003)

    Article  CAS  Google Scholar 

  16. A. Wojcik, H. Middleton, I, Damopoulos, J. Van Heerle, J. of Power Sources 118(1–2), 342 (2003)

    Article  CAS  Google Scholar 

  17. E.P. Murray, S.J. Harris, H. Jen, J. of Electrochemical Soc. 149(9), A1127 (2002)

    Article  CAS  Google Scholar 

  18. J. Kupecki, J. Jewulski, J. Milewski, In: C. Aydinalp (Ed.), Clean Energy for Better Environment (InTech, Rijeka, 2012) 53

    Google Scholar 

  19. A. Virkar, J. Power Sources 147, 8 (2005)

    Article  CAS  Google Scholar 

  20. K. Yashiro, T. Suzuki, A. Kaimai, H. Matsumoto, Y. Nigara, T. Kawada, J. Mizusaki, J. Sfeir, J. Van Herle, Solid State Ionics 175, 341 (2004)

    Article  CAS  Google Scholar 

  21. T. Ishihara, H. Matsuda, Y. Takita, J. Am. Chem. Soc. 116, 3801 (1994)

    Article  CAS  Google Scholar 

  22. C.B. Choudhary, H.S. Maiti, E.C. Subbarao, Solid Electrolytes and Their Applications (Plenum Press, New York, 1980)

    Google Scholar 

  23. J. Cheng, P. Shi, H. Zhong, B. Wang, Key Eng. Mater. 336–338, 444 (2007)

    Article  Google Scholar 

  24. K. Kawamura, K. Watanabe, T. Hiramatsu, A. Kaimai, Y. Nigara, T. Kawada, J. Mizusaki, Solid State Ionics 144, 11 (2001)

    Article  CAS  Google Scholar 

  25. Q. Li, V. Thangadurai, Fuel Cells 9, 684 (2009)

    Article  CAS  Google Scholar 

  26. J. Van Herle, D. Seneviratne, A. J. McEvoy, J. Eur. Ceram. Soc. 19, 837 (1999)

    Article  Google Scholar 

  27. J. Milewski, Fuel Cells 12, 709 (2012)

    Article  CAS  Google Scholar 

  28. J. Milewski, K. Swirski, M. Santarelli, P. Leone (Eds.), Advanced Methods of Solid Oxide Fuel Cell Modeling (Springer-Verlag, London Ltd., 2011)

    Google Scholar 

  29. H.C. Park, A.V. Virkar, J. Power Sources 186, 133 (2009)

    Article  CAS  Google Scholar 

  30. J. Ding, J. Liu, Solid State Ionic 179, 1246 (2008)

    Article  CAS  Google Scholar 

  31. T. Ishihara, T. Shibayama, M. Honda, H. Nishiguchi, Y. Takita, Chem. Commun. 13, 1227 (1999)

    Article  Google Scholar 

  32. J. Milewski, A. Miller, A. Dmowski, P. Biczel, Arch. Thermodynamics 30, 25 (2009)

    CAS  Google Scholar 

  33. L. Nikonowicz, J. Milewski, J. Power Technologies 91, 82 (2011)

    Google Scholar 

  34. A. Pramuanjaroenkij, S. Kakac, X.Y. Zhou, Int. J. Hydrogen Energy 33, 2547 (2008)

    Article  CAS  Google Scholar 

  35. Y. Xie, X. Xue, Int. J. Hydrogen Energy 34, 6882 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Kupecki.

About this article

Cite this article

Kupecki, J., Milewski, J. & Jewulski, J. Investigation of SOFC material properties for plant-level modeling. cent.eur.j.chem. 11, 664–671 (2013). https://doi.org/10.2478/s11532-013-0211-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-013-0211-x

Keywords

Navigation