Skip to main content
Log in

Effects of common reed (Phragmites australis) invasion on marsh surface macrofauna: Response of fishes and decapod crustaceans

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

The tidally inundated marsh surface is an importnat site for energy exchanges for many resident and transient species. In many areas along the East Coast of the U.S. the dominant vegetation,Spartina alterniflora, has been replaced by the common reed (Phragmites australis). This shift has caused concern about the impact ofPhragmites on marsh fauna but research in this area has been limited. During 1997 and 1998, we examined the effect ofPhragmites on fish and decapod crustacean use of the marsh surface in the brackish water reaches of the Mullica River, in southern New Jersey, U.S. Fish and decapod crustaceans were sampled with an array of shallow pit traps (rectangular glass dishes, 27.5×17.5×3.7 cm) and with flumes (1.3 m wide×10 m long of 3.2-mm mesh). Fish (2–60 mm TL) dominated pit trap collections withFundulus heteroclitus andFundulus luciae significantly more abundant atSpartina sites.Fundulus heteroclitus was also the dominant fish (15–275 mm TL) collected in flumes but collections with this gear, including a number of species not collected in pit traps, showed no distinct preferences for different marsh vegetation types. Decapod crustaceans (1–48 mm CW) collected in pit traps were generally less abundant than fishes withCallinectes sapidus andPalaemonetes spp. most abundant inSpartina, whileRhithropanopeus harrisii was most abundant inPhragmites. The same decapod crustacean species (2–186 mm CW) dominanted the flume collections and, similar to the pattern of fish collected by the flumes, there were no distinct habitat preferences for different marsh vegetation types. As a result of these observations, with different sampling techniques, it appears there is an overall negative effect ofPhragmites on larval and small juvenile fish but less or no effect on larger fish and decapods crustaceans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Able, K. W. 1984. Variation in spawning site selection of the mummichog.Fundulus heteroclitus. Copeia 1984:522–25.

    Article  Google Scholar 

  • Able, K. W. 1999. Measures of juvenile fish habitat quality: Examples from a national estuarine research reserve, p. 134–147.In L. R. Benaka (ed.), Fish Habitat: Essential Fish Habitat and Rehabilitation. American Fisheries Society Symposium 22. Bethesda, Maryland.

  • Able, K. W. andM. Castagna. 1975. Aspects of an undescribed reproductive behavior inFundulus heteroclitus (Pisces: Cyprinodontidae) from Virginia.Chesapeake Science 16:282–284.

    Article  Google Scholar 

  • Able, K. W. andM. P. Fahay. 1998. The First Year in the Life of Estuarine Fishes in the Middle Atlantic Bight. Rutgers University Press, New Brunswick, New Jersey.

    Google Scholar 

  • Able, K. W. andD. Hata. 1984. Reproductive behavior in theFundulus heteroclitus-F. grandis complex.Copeia 1984:820–825.

    Article  Google Scholar 

  • Able, K. W., R. Lathrop, and M. P. Deluca. 1995. Background for research and monitoring in the Mullica River-Great Bay Estuary. Rutgers University, Institute of Marine and Coastal Sciences Technical Report No. 96-07. New Brunswick, New Jersey.

  • Able, K. W., C. W. Talbot, andJ. K. Shisler. 1983. The spotfin killifish,Fundulus luciae, is common in New Jersey salt marshes.Bulletin of the New Jersey Academy of Science 28:7–11.

    Google Scholar 

  • Bertness, M. D. 1999. The Ecology of Atlantic Shorelines. Sinauer Associates, Inc., Sunderland, Massachusetts.

    Google Scholar 

  • Breder, Jr.,C. M. 1960. Design for a fry trap.Zoologica 45:155–160.

    Google Scholar 

  • Byrne, D. M. 1978. Life history of the spotfin killifish,Fundulus luciae (Pisces: Cyprinodontidae), in Fox Creek Marsh, Virginia.Estuaries 4:211–227.

    Article  Google Scholar 

  • Ciccetti G. andR. J. Diaz. 2000. Types of salt marsh edge and export of trophic energy from marshes to deeper habitats.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishing, The Netherlands.

    Google Scholar 

  • Conover, D. O. andB. E. Kynard. 1984. Field and laboratory observations of the Atlantic silverside,Menidia menidia (Pisces: Atherinidae).Environmental Biology of Fishes 11:161–171.

    Article  Google Scholar 

  • Deegan, L. A., J. E. Hughes, andR. A. Rountree. 2000. Salt marsh ecosystem support of marine transient species.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishing. The Netherlands.

    Google Scholar 

  • Duval, E. J. andK. W. Able. 1998. Aspects of the life history characteristics of the seaboard goby,Gobiosoma ginsburgi, in estuarine and inner continental shelf waters.Bulletin of New Jersey Academy of Science 43:5–10.

    Google Scholar 

  • Fell, P., S. P. Weissbach, D. A. Jones, M. A. Fallon, J. A. Zeppieri, E. K. Faison, K. A. Lennon, K. J. Newberry, andL. K. Reddington. 1998. Does invasion of oligohaline tidal marshes by reed grass,Phragmites australis (Cav.) Trin. Ex Steud., affect the availability of prey sources for the mummichog,Fundulus heteroclitus L.Journal of Experimental Marine Biology and Ecology 222:59–77.

    Article  Google Scholar 

  • Ferren, W. R., R. E. Good, R. Walker, andJ. Arsenault. 1981. Vegetation and flora of Hog Island, a brackish wetland in the Mullica River, New Jersey.Bartonia 48:1–10.

    Google Scholar 

  • Fitz, H. C. andR. G. Wiegert. 1991. Utilization of the intertidal zone of a salt marsh by the blue crabCallinectes sapidus: Density, return frequency, and feeding habits.Marine Ecology Progress Series 76:249–260.

    Article  Google Scholar 

  • Fulling, G. L., M. S. Peterson, andG. J. Crego. 1999. Comparison of Breder traps and seines used to sample marsh nekton.Estuaries 22:224–230.

    Article  Google Scholar 

  • Hardy, Jr., J. D. 1978. Development of Fishes of the Middle Atlantic Bight, Volume II. U. S. Department of the Interior, FWS/OBS-78/12. Washington, D.C.

  • Havens, K. J., W. I. Priest III, andH. Berquiest 1997. Investigation and long-term monitoring ofPhragmites australis within Virginia's created wetland sites.Environmental Management 21:599–605.

    Article  Google Scholar 

  • Hellings, S. E. andJ. L. Gallagher. 1992. The effects of salinity and flooding ofPhragmites australis.Journal of Applied Ecology 29:41–49.

    Article  Google Scholar 

  • Kneib, R. T. 1978. Growth, reproduction and feeding ofFundulus heteroclitus (L.) on a North Carolina salt marsh.Journal of Experimental Marien Biology Ecology 31:121–140.

    Article  Google Scholar 

  • Kneib, R. T. 1984. Patterns of utilization of the intertidal salt marsh by larvae and juveniles ofFundulus heteroclitus (Linnaeus) andFundulus luciae (Baird).Journal of Experimental Marine Biology and Ecology 83:41–51.

    Article  Google Scholar 

  • Kneib, R. T. 1986. The role ofFundulus heteroclitus in salt marsh trophic dynamics.American Zoologist 26:259–269.

    Google Scholar 

  • Kneib, R.T. 1987a. Predation risk and use of intertidal habitats by young fishes and shrimp.Ecology 68: 379–386.

    Article  Google Scholar 

  • Kneib, R. T. 1987b. Seasonal abundance, distribution and growth of postlarval and juvenile grass shrimp (Palaemonetes pugio) in a Georgia, USA, salt marsh.Marine Biology 96:215–223.

    Article  Google Scholar 

  • Kneib, R. T. 1991. Flume weir for quantitative collection of nekton from vegetated intertidal habitats.Marine Ecology Progress Series 75:29–38.

    Article  Google Scholar 

  • Kneib, R. T. 1993. Growth and mortality in successive cohorts of fish larvae within an estuarine nursery.Marine Ecology Progress Series 94:115–127.

    Article  Google Scholar 

  • Kneib, R. T. 1997a. Early life stages of resident nekton in intertidal marshes.Estuaries 20:214–230.

    Article  Google Scholar 

  • Kneib, R. T. 1997b. The role of tidal marshes in the ecology of estuarine nekton.Oceanography Marine Biology: Annual Review 35:163–220.

    Google Scholar 

  • Kneib, R. T. andM. K. Knowlton. 1995. Stage-structured interactions between seasonal and permanent residents of an estuarine nekton community.Oecologia 103:425–434.

    Article  Google Scholar 

  • Kneib, R. T. andA. E. Stiven. 1978. Growth, reproduction, and feeding ofFundulus heteroclitus (L.) on a North Carolina salt marsh.Journal of Experimental Marine Biology and Ecology 31: 121–140.

    Article  Google Scholar 

  • Kneib, R. T. andS. L. Wagner. 1994. Nekton use of vegetated marsh habitats at different stages of tidal inundation.Marine Ecology Progress Series 106:227–238.

    Article  Google Scholar 

  • Marks, M., B. Lapin, andJ. Randall. 1994.Phragmites australis (P. communis): Threats, management and monitoring.Natural Areas Journal 4:285–294.

    Google Scholar 

  • Marteinsdottir, G. 1991. Early life history of the mummichog (Fundulus heteroclitus): Egg size variation and its significance in reproduction and survival of eggs and larvae. Ph.D. Dissertation, Rutgers University, New Brunswick, New Jersey.

    Google Scholar 

  • McIvor, C. C. andW. E. Odum. 1986. The flume net: A quantitative method for sampling fishes and macrocrustaceans on tidal marsh surfaces.Estuaries 9:219–224.

    Article  Google Scholar 

  • McIvor, C. C. andL. P. Rozas. 1996. Nekton use of intertidal salt marshes; A review, p. 311–334.In K. F. Nordstrom and C. T. Roman (eds.), Estuarine Shorelines: Hydrological, Geomorphological and Ecological Interactions. John Wiley and Sons, Ltd., Chichester, England.

    Google Scholar 

  • Mense, D. J. andE. L. Wenner. 1989. Distribution and abundance of early life history stages of blue crab,Callinectes sapidus, in tidal marsh creeks near Charleston, South Carolina.Estuaries 12:157–168.

    Article  Google Scholar 

  • Meyerson, L. A., K. A. Vogt, andR. M. Chambers. 2000. Linking the success ofPhragmites to the alteration of ecosystem nutrient cycles.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishing, The Netherlands.

    Google Scholar 

  • Middaugh, D. P. andT. Takita. 1983. Tidal and diurnal spawning cues in the Atlantic silverside,Menidia menidia.Environmental Biology of Fishes 8:97–104.

    Article  Google Scholar 

  • Minello, T. J. 1999. Nekton densities in shallow estuarine habitats of Texas and Louisiana and the identification of essential fish habitat, p. 43–75.In L. R. Benaka (ed.), Fish Habitat: Essential Fish Habitat and Rehabilitation. American Fisheries Society Symposium 22. Bethesda, Maryland.

  • Minello, T. J. andR. J. Zimmerman. 1992. Utilization of natural and transplanted Texas salt marshes by fish and decapod crustaceans.Marine Ecology Progress Series 90:273–285.

    Article  Google Scholar 

  • Niering, W. A. andR. S. Warren. 1977. Vegetation patterns and processes in New England salt marshes.Bioscience 30:301–307.

    Article  Google Scholar 

  • Orson, R. A., R. S. Warren andW. A. Niering. 1987. Development of a tidal marsh in a New England river valley.Estuaries 10:20–27.

    Article  Google Scholar 

  • Peterson, G. W. andR. E. Turner. 1994. The value of salt marsh edge vs interior as a habitat for fish and decapod crustaceans in a Louisiana tidal marsh.Estuaries 17:235–262.

    Article  Google Scholar 

  • Pyke, C. R. andK. J. Havens. 1999. Distribution of the invasive reed Phragmites australis relative to sediment depth in a created wetland.Wetlands 19:283–287.

    Article  Google Scholar 

  • Rice, D. andJ. C. Stevenson. 1996. The distribution and expansion rate ofPhragmites australis in six Chesapeake Bay area marshes, p. 467–476.In GIS and Water Resources, American Water Resources Association. Middleburg, Virginia.

    Google Scholar 

  • Roman, C. T., W. A. Niering, andR. S. Warren. 1984. Salt marsh vegetation change in response to tidal restriction.Environmental Management 8:141–150.

    Article  Google Scholar 

  • Rozas, L. P. andT. J. Minello. 1997. Estimating densities of small fishes and decapod crustaceans in shallow estuarine habitats: A review of sampling design with focus on gear selection.Estuaries 20:199–213.

    Article  Google Scholar 

  • Rozas, L. P. andD. J. Reed. 1993. Nekton use of marsh surface habitats in Louisiana (USA) deltaic salt marshes undergoing submergence.Marine Ecology Progress Series 96:147–157.

    Article  Google Scholar 

  • Sneddon, L. A., K. J. Metzler, andM. Anderson. 1995. A classification and description of natural community alliances and community elements of the Delaware Estuary, p. 3–29.In L. E. Dove and R. M. Nyman (eds.), Living Resources of the Delaware Estuary. Dover, Delaware.

    Google Scholar 

  • Stalter, R. andJ. Baden. 1994. A twenty year comparison of vegetation of three abandoned rice fields, Georgetown County, South Carolina.Castanea 59:69–77.

    Google Scholar 

  • Stevenson, J. C., M. S. Kearney, andK. L. Sundberg. 2000. The health and long term stability of natural and restored marshes in Chesapeake Bay.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishing. The Netherlands.

    Google Scholar 

  • Talbot, C. W. andK. W. Able. 1984. Composition and distribution of larval fishes in New Jersey high marshes.Estuaries 7:434–443.

    Article  Google Scholar 

  • Taylor, M. H. andL. DiMichele. 1983. Spawning site utilization in a Delaware population ofFundulus heteroclitus (Pisces:Cyprinodontidae).Copeia 1983:719–725.

    Article  Google Scholar 

  • Taylor, M. H., L. DiMichele, andG. J. Leach. 1977. Egg stranding in the life cycle of the mummichog,Fundulus heteroclitus.Copeia 1977:397–399.

    Article  Google Scholar 

  • Taylor, M. H., L. DiMichele, M. M. Levitan, andW. F. Jacob. 1979. Lunar spawning cycle in the mummichog,Fundulus heteroclitus (Pisces: Cyprinodontidae).Copeia 1979:291–297.

    Article  Google Scholar 

  • Wainright, S. C., M. P. Weinstein, K. W. Able, andC. A. Currin. 2000. Relative importance of benthic microalgae, phytoplankton and the detritus of smooth cordgrass (Spartina) and the common reed (Phragmites) to brackish marsh food webs.Marine Ecology Progress Series 200:77–91.

    Article  CAS  Google Scholar 

  • Weinstein, M. P. andJ. H. Balletto. 1999. Does the common reed,Phragmites australis affect essential fish habitat?Estuaries 22:793–802.

    Article  Google Scholar 

  • Weinstein, M. P., K. R. Philipp, andP. Goodwin. 2000. Catastrophes, near-catastrophes and the bounds of expectation: Wetland restoration on a macroscale.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controverses in Tidal Marsh Ecology. Kluwer Academic Publishing. The Netherlands.

    Google Scholar 

  • Weisburg, S. B. andV. A. Lotrich. 1982. The importance of an infrequently flooded intertidal marsh surface as an energy source for the mummichog,Fundulus heteroclitus: An experimental approach.Marine Biology 66:307–310.

    Article  Google Scholar 

  • Welsh, B. L. 1975. The role of grass shrimp,Palaemonetes pugio, in a tidal marsh ecosystem.Ecology 56:513–530.

    Article  Google Scholar 

  • Windham, L. 1985. Effects ofPhragmites australis invasion on aboveground biomass and soil properties in brackish tidal marsh of Mullica River, New Jersey. M.S. Thesis, Rutgers University, New Brunswick, New Jersey.

    Google Scholar 

  • Windham, L. andR. Lathrop. 1999. Effect ofPhragmites australis (common reed) invasion on above-ground biomass and soil properties of brackish tidal marsh of the Mullica River, New Jersey.Estuaries 22:927–935.

    Article  Google Scholar 

  • Winogrond, H. G. 1997. Invasion ofPhragmites australis in the tidal marshes of the Hudson River. M.S. Thesis, Bard College, Annandale-on-Hudson, New York.

    Google Scholar 

  • Zimmerman, R. J. andT. J. Minello. 1984. Densities ofPenaeus aztecus, Penaeus setiferus and other natant macrofauna in a Texas salt marsh.Estuaries 7:421–433.

    Article  Google Scholar 

Sources of Unpublished Materials

  • Angradi, T. R. unpublished data. U.S. Environmental Protection Agency, Region 8 (8 EPR-EP), 999 18th Street, Suite 500, Denver, Colorado 80206.

  • Windham, L. personal communication. Department of Biological Sciences, Rutgers University, 101 Warren Street, Newark, New Jersey 07102.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth W. Able.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Able, K.W., Hagan, S.M. Effects of common reed (Phragmites australis) invasion on marsh surface macrofauna: Response of fishes and decapod crustaceans. Estuaries 23, 633–646 (2000). https://doi.org/10.2307/1352890

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1352890

Keywords

Navigation