, Volume 15, Issue 3, pp 298-306

The trophic consequences of oyster stock rehabilitation in Chesapeake Bay

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

There is mounting speculation that overharvesting of oyster stocks (Crassostrea virginica) in Chesapeake Bay may be a factor contributing to the decline in water quality and shifts in the dominance of species inhabiting the estuary. The trophic consequences of increasing the oyster population may be addressed using a simple quasi-equilibrium, mass action model of the exchanges transpiring in the Chesapeake mesohaline ecosystem. According to output from the model, increasing oyster abundance would decrease phytoplankton productivity as well as stocks of pelagic microbes, ctenophores, medusae, and particulate organic carbon. Recently acquired field data on phytoplankton productivity, bacterioplankton, and labile organic carbon in the vicinity of rafted oyster aquaculture support model predictions. The model also indicates that more oysters should increase benthic primary production, fish stocks, and mesozooplankton densities. Hence, augmenting the oyster community by restoring beds or introducing raft culture represents a potentially significant adjunct to the goal of mitigating eutrophication through curtailment of nutrient inputs. *** DIRECT SUPPORT *** A01BY059 00005