, Volume 3, Issue 2, pp 111-121

Nitrogen and phosphorus distribution and utilization bySpartina alterniflora in a Louisiana gulf coast marsh

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Nitrogen and phosphorus content ofSpartina alterniflora Loisel and soil nitrogen were measured along a transect perpendicular to a stream in a Louisiana salt marsh in order to provide information on differences between the so-called streamside and inland regions. Total plant nitrogen and phosphorus levels in June and September tended to be greater at streamside than inland sites. Total soil nitrogen on a dry soil weight basis increased with distance inland from a natural stream toward an interdistributary basin in the marsh. Soil extractable ammonium-nitrogen levels measured in June were very low in vegetated streamside and inland areas, but they were much higher in inland areas devoid of plants.

Nitrogen and phosphorus utilization byS. alterniflora was also investigated at an inland location in the salt marsh. Labelled ammonium-nitrogen and phosphate-phosphorus were added in May at a rate of 200 kg/ha to the soil of replicated plots. Added nitrogen significantly increased total above-ground plant biomass and plant height by 28 and 25%, respectively, 4 months after application. The ratio of belowground macro-organic matter to total aboveground biomass was decreased from 5.7 to 4.7 by the additional nitrogen. Added phosphorus did not significantly affect plant height and biomass. The use of15N-depleted nitrogen tracers showed that about half of the nitrogen in the aboveground portion ofS. alterniflora from 1 to 4 months after the nitrogen addition was derived from the added ammonium-nitrogen. After 4 months, 28 and 29% of the added labelled nitrogen was recovered in the aboverground and belowground biomass ofS. alterniflora, respectively. Recovery of added nitrogen was overestimated with a non-tracer method based on the difference in total nitrogen uptake between nitrogen-amended plots and untreated plots.

Soil organic nitrogen comprised the majority of the nitrogen in the salt marsh. Nitrogen in the standing crop biomass ofS. alterniflora represented only about 2% of the total nitrogen in the plantsoil system of an inland marsh to a 20 cm soil depth.