Skip to main content
Log in

Spatial characterization of water quality in Florida Bay and Whitewater Bay by multivariate analyses: Zones of similar influence

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

We apply an objective statistical analysis to a 6-yr, multiparameter dataset in an effort to describe the spatial dependence and inherent variation of water quality patterns in the Florida Bay-Whitewater Bay area. Principal component analysis of 16 water quality parameters collected monthly over a 6-yr period resulted in live principal components (PC) that explained 71.8% of the variance of the original variables. The “organic” component (PC1) was composed of TN, TON, APA, and TOC; the “inorganic N” component (PCII) contained NO2, NO3, and NH4 +, the “phytoplankton” component (PCIII) was made up of turbidity, TP, and Chl a; DO and temperature were inversely related (PCIV); and salinity was the only parameter included in PCV. A cluster analysis of mean and SD of PG scores resulted in the spatial aggregation of 50 fixed monitoring stations in Florida Bay and Whitewater Bay into six zones of similar influence (ZSI) defined as Eastern Florida Bay. Core Florida Bay, Western Florida Bay, Coot Bay, the Inner Mangrove Fringe, and the Outer Mangrove Fringe. Marked differences in physical, chemical, and biological characteristics among ZSI were illustrated by this technique. Comparison of medians and variability of parameter values among ZSI allowed large-scale generalizations as to underlying differences in water quality in these regions. For example. Fastern Florida Bay had lower salinity, TON, TOC, TP, and Chl a than the Core Bay as a function of differences in freshwater inputs and water residence time. Comparison of medians and variability within ZSI resulted in new hypotheses as to the processes generating these internal patterns. For example, the Core Bay had very high TON, TOC, and NH4 + concentrations but very low NO3 , leading us to postulate the inhibition of nitrification via CO production by TOC photolysis. We believe that this simple, objective approach to spatial analysis of fixed-station monitoring datasets will aid scientists and managers in the interpretation of factors underlying the observed parameter distribution patterns. We also expect that this approach will be useful in focussing attention on specific spatial areas of concern and in generating new ideas for hypothesis testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Bodle, M. J., A. P. Ferriter, and D. D. Thayer. 1994. The biology, distribution, and ecological consequences of Melaleuca quinqueneria in the Everglades, p. 341–356. In S. M. Davis and J. C. Ogden (eds.), Everglades, The Ecosystem and Its Restoration. St. Lucie Press, Delray Beach, Florida.

    Google Scholar 

  • Bosence, D. 1989. Surface sublittoral sediments of Florida Bay. Bulletin of Marine Science 44:434–453.

    Google Scholar 

  • Boto, K. G. and A. I. Robertson. 1990. The relationship between nitrogen fixation and tidal exports of nitrogen in a tropical mangrove system. Estuarine, Coastal and Shelf Science 31:531–540.

    Article  CAS  Google Scholar 

  • Bulger, A. J., B. P. Hayden, M. E. Monaco, D. M. Nelson, and M. G. McCormick-Ray. 1993. Biologically-based estuarine salinity zones derived from multivariate analysis. Estuaries 16: 311–322.

    Article  Google Scholar 

  • Butler, M. J. IV, J. V. Hunt, W. F. Herrnkind, M. J. Childress, R. Bertelson, W. Sharp, T. Matthews, J. M. Field, and H. G. Marshall. 1995. Cascading disturbances in Florida Bay, USA: Cyanobacteria blooms, sponge mortality, and implications for juvenile spiny lobsters, Panulirus argus. Marine Ecology Progress Series 129:119–125.

    Article  Google Scholar 

  • Christian, R. R., J. N. Boyer, D. W. Stanley, and W. M. Rizzo. 1991. Multi-year distribution patterns of nutrients in the Neuse River Estuary, North Carolina. Marine Ecology Progress Series 71:259–274.

    Article  Google Scholar 

  • Fourqurean, J. W., G. V. N. Powell, and J. C. Zieman. 1992a. Phosphorus limitation of primary production in Florida Bay: Evidence from the C:N:P ratios of the dominant seagrass, Thalassia testudinum. Limnology and Oceanography 37:162–171.

    CAS  Google Scholar 

  • Fourqurean, J. W., G. V. N. Powell, and J. C. Zieman. 1992b. Relationships between porewater nutrients and seagrasses in a subtropical carbonate environment. Marine Biology 114:57–65.

    CAS  Google Scholar 

  • Fourqurean, J. W., R. D. Jones, and J. C. Zieman. 1993. Processes influencing water column nutrient characteristics and phosphorus limitation of phytoplankton biomass in Florida Bay, FL, USA: Inferences from spatial distributions. Estuarine, Coastal and Shelf Science 36:295–314.

    Article  CAS  Google Scholar 

  • Hardin, M. M., H. A. Rines, C. E. Rose, and M. B. Abel. 1996. Spatial heterogeneity of macrophytes and selected invertebrates in Narragansett Bay (RI, USA) as revealed by principal component and cluster analyses. Estuarine, Coastal and Shelf Science 42:123–134.

    Google Scholar 

  • Jackilee, J. B. and D. R. Hamilton. 1977. Objective analysis and classification of oceanographic data. Tellus 29:545–560.

    Google Scholar 

  • Jones, R. D., and T. A. Frankovich. In press. A rapid, precise, and sensitive method for the determination of total nitrogen in natural waters. Marine Chemistry.

  • Lapointe, B. E. and M. W. Clark. 1992. Nutrient inputs from the watershed and coastal eutrophication in the Florida Keys. Estuaries 15:465–476.

    Article  CAS  Google Scholar 

  • Overland, J. E. and R. W. Preisendorfer. 1982. A significance test for principal components applied to cyclone climatology. Monthly Weather Review 110:1–4.

    Article  Google Scholar 

  • Philips, E. J. and S. Badylak. 1996. Spatial variability in phytoplankton standing stock and composition in a shallow innershelf lagoon, Florida Bay, Florida. Bulletin of Marine Science 58: 203–216.

    Google Scholar 

  • Powell, G. V. N., W. J. Kenworthy, and J. W. Fourqurean. 1989. Experimental evidence for nutrient limitation of seagrass growth in a tropical estuary with restricted circulation. Bulletin of Marine Science 44:324–340.

    Google Scholar 

  • Robblee, M. B., J. T. Tilmant, and J. Emerson. 1989. Quantitative observations on salinity. Bulletin of Marine Science 44: 523.

    Google Scholar 

  • Robblee, M. B., T. B. Barber, P. R. Carlson Jr., M. J. Durako, J. W. Fourqurean, L. M. Muehlstein, D. Porter, L. A. Yabro, R. T. Zieman, and J. C. Zieman. 1991. Mass mortality of the tropical seagrass Thalassia testudinum in Florida Bay (USA). Marine Ecology Progress Series 71:297–299.

    Article  Google Scholar 

  • Smith, T. J. III, M. B. Robblee, H. R. Wanless, and T. W. Doyle. 1994. Mangroves, hurricanes, and lightening strikes, BioScience 44:256–262.

    Article  Google Scholar 

  • Solorzano, L., and J. H. Sharp. 1980. Determination of total dissolved phosphorus and particulate phosphorus in natural waters. Limnology and Oceanography 25:754–758.

    Article  CAS  Google Scholar 

  • Strickland, J. D. H., and T. R. Parsons. 1972. A practical handbook of seawater analysis. Bulletin of the Fisheries Research Board of Canada 167:107–112.

    Google Scholar 

  • Tabb, D. C., D. L. Dubrow, and R. B. Manning. 1962. The ecology of northern Florida Bay and adjacent estuaries. Technical Series No. 39, Board of Conservation, State of Florida, Miami, Florida.

    Google Scholar 

  • Thayer, G. W., and A. J. Chester. 1989. Distribution and abundance of fishes among basin and channel habitats in Florida Bay. Bulletin of Marine Science 44:200–219.

    Google Scholar 

  • Turney, W. J., and R. F. Perkins. 1972. Molluscan distributions in Florida Bay. Sedimenta III, Comparative Sedimentology Laboratory, University of Miami, Florida.

    Google Scholar 

  • Vanzella, A., M. A. Guerrero, R. D. Jones. 1980. Effect of CO and light on ammonium and nitrite oxidation by chemolithotrophic bacteria. Marine Ecology Progress Series 57:69–76.

    Article  Google Scholar 

  • Vézina, A. F., Y. Gratton, and P. Vinet. 1995. Mesoscale physical-biological variability during a summer phytoplankton bloom in the lower St. Lawrence Estuary. Estuarine, Coastal and Shelf Science 41:393–411.

    Article  Google Scholar 

  • Zieman, J. C., J. W. Fourqurean, and R. L. Iverson. 1989. Distribution, abundance, and productivity of seagrasses and macroalgae in Florida Bay. Bulletin of Marine Biology 44:292–311.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph N. Boyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyer, J.N., Fourqurean, J.W. & Jones, R.D. Spatial characterization of water quality in Florida Bay and Whitewater Bay by multivariate analyses: Zones of similar influence. Estuaries 20, 743–758 (1997). https://doi.org/10.2307/1352248

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1352248

Keywords

Navigation