Skip to main content
Log in

Comparing Antihypertensive Effect and Plasma Ciclosporin Concentration between Amlodipine and Valsartan Regimens in Hypertensive Renal Transplant Patients Receiving Ciclosporin Therapy

  • Original Research Article
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

Background

Hypertension, a major complication in kidney transplant recipients, is associated with premature death and graft loss. However, an optimal antihypertensive therapy for these patients has not been established [Chinese Clinical Trial Registry No. ChiCTR-TRC-10001071].

Objective

The aim of the present study was to evaluate the effect of amlodipine and valsartan on BP control in renal transplant patients and to analyze the correlation between cytochrome P450 (CYP) 3A5 or multidrug resistance-1 gene (MDR1) genotype and the antihypertensive effect of these two regimens.

Methods

150 renal transplant patients with stage 1 or 2 hypertension were enrolled in the trial. Patients were randomly assigned to amlodipine or valsartan. Metoprolol was added if BP was not under control after 4 weeks. BP and plasma levels of ciclosporin were monitored during the 24-week trial. CYP3A5 and MDR1 genotypes were determined using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method.

Results

The demographic features and baseline BP were similar between these two groups. During the 24-week trial, the reduction of systolic BP (SBP) was similar between the amlodipine and valsartan groups. However, the reduction of diastolic BP (DBP) was significantly greater in the amlodipine group compared with the valsartan group at 12, 16, and 24 weeks of treatment. The plasma level of ciclosporin at 2 hours of medication was significantly higher in the amlodipine group than in the valsartan group after 4 weeks of the trial. The reduction of DBP at 24 weeks was greater in the subjects with CYP3A5 *3/*3 variant than in those with CYP3A5*1/*1 variant (−13.5± 1.9mmHg vs −8.7± 1.6mmHg, p<0.05).

Conclusion

The present study demonstrated that amlodipine produced a greater reduction of DBP than valsartan, although both amlodipine and valsartan resulted in satisfactory control of BP in patients with renal transplantation. Administration of amlodipine significantly increased the plasma concentration of ciclosporin, and its effects on BP control and ciclosporin concentration may be associated with the CYP3A5 genotype in these subjects [Chinese Clinical Trial Registry No. ChiCTR-TRC-10001071].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Fig. 2
Fig. 3
Table II
Table III

Similar content being viewed by others

References

  1. Morales JM, Andres A, Rengel M, et al. Influence of cyclosporin, tacrolimus and rapamycin on renal function and arterial hypertension after renal transplantation. Nephrol Dial Transplant 2001; 16 Suppl. 1: 121–4.

    Article  PubMed  CAS  Google Scholar 

  2. Morales JM, Dominguez-Gil B. Cardiovascular risk profile with the new immunosuppressive combinations after renal transplantation. J Hypertens 2005 Sep; 23(9): 1609–16.

    Article  PubMed  CAS  Google Scholar 

  3. Hricik DE, Chareandee C, Knauss TC, et al. Hypertension after pancreas-kidney transplantation: role of bladder versus enteric pancreatic drainage. Transplantation 2000 Aug 15; 70(3): 494–6.

    Article  PubMed  CAS  Google Scholar 

  4. Sander M, Lyson T, Thomas GD, et al. Sympathetic neural mechanisms of cyclosporine-induced hypertension. Am J Hypertens 1996 Nov; 9(11): 121S–38S.

    Article  PubMed  CAS  Google Scholar 

  5. Akioka K, Takahara S, Ichikawa S, et al. Factors predicting long-term graft survival after kidney transplantation: multicenter study in Japan. World J Surg 2005 Feb; 29(2): 249–56.

    Article  PubMed  Google Scholar 

  6. Midtvedt K, Hartmann A. Hypertension after kidney transplantation: are treatment guidelines emerging? Nephrol Dial Transplant 2002 Jul; 17(7): 1166–9.

    Article  PubMed  Google Scholar 

  7. Cross NB, Webster AC, Masson P, et al. Antihypertensives for kidney transplant recipients: systematic review and meta-analysis of randomized controlled trials. Transplantation 2009 Jul 15; 88(1): 7–18.

    Article  PubMed  CAS  Google Scholar 

  8. Morris RG, Russ GR, Cervelli MJ, et al. Comparison of trough, 2-hour, and limited AUC blood sampling for monitoring cyclosporin (Neoral) at day 7 post-renal transplantation and incidence of rejection in the first month. Ther Drug Monit 2002 Aug; 24(4): 479–86.

    Article  PubMed  CAS  Google Scholar 

  9. Caforio AL, Tona F, Piaserico S, et al. C2 is superior to C0 as predictor of renal toxicity and rejection risk profile in stable heart transplant recipients. Transpl Int 2005 Jan; 18(1): 116–24.

    Article  PubMed  Google Scholar 

  10. Pescovitz MD, Barbeito R. Two-hour post-dose cyclosporine level is a better predictor than trough level of acute rejection of renal allografts. Clin Transplant 2002 Oct; 16(5): 378–82.

    Article  PubMed  Google Scholar 

  11. Julien J, Farge D, Guillemain R, et al. Arterial hypertension in heart transplant recipients [French]. Presse Med 1990 Jan 6–13; 19(1): 26–9.

    PubMed  CAS  Google Scholar 

  12. Pagnin E, Giacon B, Zaghetto F, et al. Arterial hypertension and oxidative stress induced by cyclosporine: effect of carvedilol [Italian]. Ann Ital Med Int 2001 Apr–Jun; 16(2): 101–5.

    PubMed  CAS  Google Scholar 

  13. Rossi SJ, Schroeder TJ, Hariharan S, et al. Prevention and management of the adverse effects associated with immunosuppressive therapy. Drug Saf 1993 Aug; 9(2): 104–31.

    Article  PubMed  CAS  Google Scholar 

  14. Bhatnagar V, Garcia EP, O’Connor DT, et al. CYP3A4 and CYP3A5 polymorphisms and blood pressure response to amlodipine among African-American men and women with early hypertensive renal disease. Am J Nephrol 2009 Nov 12; 31(2): 95–103.

    Article  PubMed  Google Scholar 

  15. Staatz CE, Goodman LK, Tett SE. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: part I. Clin Pharmacokinet 2010 Mar 1; 49(3): 141–75.

    Article  PubMed  CAS  Google Scholar 

  16. Bailey DG, Dresser GK. Interactions between grapefruit juice and cardiovascular drugs. Am J Cardiovasc Drugs 2004; 4(5): 281–97.

    Article  PubMed  CAS  Google Scholar 

  17. Coto E, Tavira B. Pharmacogenetics of calcineurin inhibitors in renal transplantation. Transplantation 2009 Aug 15; 88(3 Suppl.): S62–7.

    Article  PubMed  CAS  Google Scholar 

  18. Dorababu M, Nishimura A, Prabha T, et al. Effect of cyclosporine on drug transport and pharmacokinetics of nifedipine. Biomed Pharmacother 2009 Nov; 63(9): 697–702.

    Article  PubMed  CAS  Google Scholar 

  19. Zhang X, Liu ZH, Zheng JM, et al. Influence of CYP3A5 and MDR1 polymorphisms on tacrolimus concentration in the early stages after renal transplantation. Clin Transplant 2005 Oct; 19(5): 638–43.

    Article  PubMed  Google Scholar 

  20. Wei-lin W, Jing J, Shu-sen Z, et al. Tacrolimus dose requirement in relation to donor and recipient ABCB1 and CYP3A5 gene polymorphisms in Chinese liver transplant patients. Liver Transpl 2006 May; 12(5): 775–80.

    Article  Google Scholar 

  21. Ruggenenti P, Perico N, Mosconi L, et al. Calcium channel blockers protect transplant patients from cyclosporine-induced daily renal hypoperfusion. Kidney Int 1993 Mar; 43(3): 706–11.

    Article  PubMed  CAS  Google Scholar 

  22. McCulloch TA, Harper SJ, Donnelly PK, et al. Influence of nifedipine on interstitial fibrosis in renal transplant allografts treated with cyclosporin A. J Clin Pathol 1994 Sep; 47(9): 839–42.

    Article  PubMed  CAS  Google Scholar 

  23. Bakris G. Are there effects of renin-angiotensin system antagonists beyond blood pressure control? Am J Cardiol 2010 Jan 4; 105(1 Suppl.): 21A–9A.

    Article  PubMed  CAS  Google Scholar 

  24. Maschio G, Alberti D, Janin G, et al. Effect of the angiotensin-converting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency Study Group. N Engl J Med 1996 Apr 11; 334(15): 939–45.

    Article  PubMed  CAS  Google Scholar 

  25. The GISEN Group (Gruppo Italiano di Studi Epidemiologici in Nefrologia). Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, nondiabetic nephropathy. Lancet 1997 Jun 28; 349(9069): 1857–63.

    Article  Google Scholar 

  26. Inigo P, Campistol JM, Lario S, et al. Effects of losartan and amlodipine on intrarenal hemodynamics and TGF-beta(1) plasma levels in a crossover trial in renal transplant recipients. J Am Soc Nephrol 2001 Apr; 12(4): 822–7.

    PubMed  CAS  Google Scholar 

  27. Hillebrand U, Suwelack BM, Loley K, et al. Blood pressure, antihypertensive treatment, and graft survival in kidney transplant patients. Transpl Int 2009 Nov; 22(11): 1073–80.

    Article  PubMed  CAS  Google Scholar 

  28. Formica Jr RN, Friedman AL, Lorber MI, et al. A randomized trial comparing losartan with amlodipine as initial therapy for hypertension in the early post-transplant period. Nephrol Dial Transplant 2006 May; 21(5): 1389–94.

    Article  PubMed  CAS  Google Scholar 

  29. Pesavento TE, Jones PA, Julian BA, et al. Amlodipine increases cyclosporine levels in hypertensive renal transplant patients: results of a prospective study. J Am Soc Nephrol 1996 Jun; 7(6): 831–5.

    PubMed  CAS  Google Scholar 

  30. Halimi JM, Giraudeau B, Buchler M, et al. Enalapril/amlodipine combination in cyclosporine-treated renal transplant recipients: a prospective randomized trial. Clin Transplant 2007 Mar–Apr; 21(2): 277–84.

    Article  PubMed  Google Scholar 

  31. Cantarovich M, Hiesse C, Lockiec F, et al. Confirmation of the interaction between cyclosporine and the calcium channel blocker nicardipine in renal transplant patients. Clin Nephrol 1987 Oct; 28(4): 190–3.

    PubMed  CAS  Google Scholar 

  32. Rump LC, Oberhauser V, Schwertfeger E, et al. Dihydropyridine calcium antagonists and renal function in hypertensive kidney transplant recipients. J Hypertens 2000 Aug; 18(8): 1115–9.

    Article  PubMed  CAS  Google Scholar 

  33. Rahn KH, Barenbrock M, Fritschka E, et al. Effect of nitrendipine on renal function in renal-transplant patients treated with cyclosporin: a randomised trial. Lancet 1999 Oct 23; 354(9188): 1415–20.

    Article  PubMed  CAS  Google Scholar 

  34. Evans WE, McLeod HL. Pharmacogenomics: drug disposition, drug targets, and side effects. N Engl J Med 2003 Feb 6; 348(6): 538–49.

    Article  PubMed  CAS  Google Scholar 

  35. Kahan BD, Keown P, Levy GA, et al. Therapeutic drug monitoring of immunosuppressant drugs in clinical practice. Clin Ther 2002 Mar; 24(3): 330–50; discussion 29.

    Article  PubMed  CAS  Google Scholar 

  36. Corea L, Cardoni O, Fogari R, et al. Valsartan, a new angiotensin II antagonist for the treatment of essential hypertension: a comparative study of the efficacy and safety against amlodipine. Clin Pharmacol Ther 1996 Sep; 60(3): 341–6.

    Article  PubMed  CAS  Google Scholar 

  37. Kim KA, Park PW, Park JY. Effect of cytochrome P450 3A5*3 genotype on the stereoselective pharmacokinetics of amlodipine in healthy subjects. Chirality 2009 May; 21(5): 485–91.

    Article  PubMed  CAS  Google Scholar 

  38. Kim KA, Park PW, Lee OJ, et al. Effect of CYP3A5*3 genotype on the pharmacokinetics and pharmacodynamics of amlodipine in healthy Korean subjects. Clin Pharmacol Ther 2006 Dec; 80(6): 646–56.

    Article  PubMed  CAS  Google Scholar 

  39. Bhatnagar V, Garcia EP, O’Connor DT, et al. CYP3A4 and CYP3A5 polymorphisms and blood pressure response to amlodipine among African-American men and women with early hypertensive renal disease. Am J Nephrol 2010; 31(2): 95–103.

    Article  PubMed  CAS  Google Scholar 

  40. Fromm MF. Genetically determined differences in P-glycoprotein function: implications for disease risk. Toxicology 2002 Dec 27; 181–182; 299–303.

    Article  PubMed  CAS  Google Scholar 

  41. Schwab M, Eichelbaum M, Fromm MF. Genetic polymorphisms of the human MDR1 drug transporter. Ann Rev Pharmacol Toxicol 2003; 43: 285–307.

    Article  CAS  Google Scholar 

  42. Ameyaw MM, Regateiro F, Li T, et al. MDR1 pharmacogenetics: frequency of the C3435T mutation in exon 26 is significantly influenced by ethnicity. Pharmacogenetics 2001 Apr; 11(3): 217–21.

    Article  PubMed  CAS  Google Scholar 

  43. Kim KA, Park PW, Park JY. Effect of ABCB1 (MDR1) haplotypes derived from G2677T/C3435T on the pharmacokinetics of amlodipine in healthy subjects. Br J Clin Pharmacol 2007 Jan; 63(1): 53–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National 863 plan Foundation of China (No. 2009AA022703), the National Basic Research Program of China (No. 2011CB512001), and the International Scientific and Technological Cooperation Project of Hunan (No. 2010WK2006). The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, J., Huang, Z., Yang, G. et al. Comparing Antihypertensive Effect and Plasma Ciclosporin Concentration between Amlodipine and Valsartan Regimens in Hypertensive Renal Transplant Patients Receiving Ciclosporin Therapy. Am J Cardiovasc Drugs 11, 401–409 (2011). https://doi.org/10.2165/11593800-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11593800-000000000-00000

Keywords

Navigation