Skip to main content
Log in

Pharmacotherapy of Epilepsy

Newly Approved and Developmental Agents

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

This article discusses seven newly available antiepileptic drugs (AEDs) and agents in phase III development.

Lacosamide, licensed as an adjunctive treatment for partial-onset seizures, primarily acts by enhancing sodium channel slow inactivation. At daily doses of 200–600 mg, the drug significantly reduced partial-onset seizures in adults with refractory epilepsy. The most common adverse effects are CNS related.

Rufinamide, available as adjunctive treatment for seizures associated with Lennox-Gastaut syndrome, has an unclear mechanism of action, although it does block voltage-dependent sodium channels. Coadministration of valproic acid significantly increases rufinamide circulating concentrations. The drug has been shown to have efficacy for partial-onset, primary generalized tonic-clonic, tonic-atonic, absence and atypical absence seizures. Adverse effects are mainly somnolence, nausea and vomiting.

Eslicarbazepine acetate, a carbamazepine analogue, was recently licensed as adjunctive treatment for partial-onset seizures. Eslicarbazepine acetate acts at voltage-gated sodium channels, although the precise mechanism of action is unclear. The drug had efficacy for partial-onset seizures in three randomized, double-blind, placebo-controlled studies, using 400, 800 or 1200mg/day. Adverse effects include dizziness and somnolence.

Retigabine (ezogabine) exerts its anticonvulsant effect through the opening of neuronal voltage-gated potassium channels. Following significant seizure reduction rates at dosages of 600, 900 and 1200mg/day, license applications have been submitted for its use as adjunctive treatment for patients with partial-onset seizures. Dose-related adverse effects include somnolence, confusion and dizziness.

Brivaracetam is the n-propyl analogue of levetiracetam. Mixed results have been obtained in phase III studies in patients with partial-onset seizures, and further trials in children, patients with photosensitive epilepsy and patients with partial-onset seizures are ongoing. Dizziness, headache and somnolence are the most common adverse effects reported.

Perampanel was designed as an AMPA-type glutamate receptor antagonist. Following encouraging results from phase II studies in patients with refractory partial-onset seizures, recruitment for phase III trials is almost complete.

Ganaxolone is a neurosteroid with potent antiepileptic activity that modulates GABAA receptors in the CNS. Ganaxolone has shown promise in a variety of seizure types. Dizziness and somnolence have been reported in some patients.

The availability of new AEDs has widened the choices for clinicians treating patients with epilepsy. However, given the minimal improvement in prognosis and disappointing efficacy outcomes in double-blind, placebo-controlled, dose-ranging regulatory trials, it seems unlikely that these novel agents will have a major impact on outcomes for people with epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hauser WA, Annegers JF, Rocca WA. Descriptive epidemiology of epilepsy: contributions of population-based studies from Rochester, Minnesota. Mayo Clin Proc 1996; 71: 576–86

    PubMed  CAS  Google Scholar 

  2. Kwan P, Brodie MJ. Refractory epilepsy: mechanisms and solutions. Expert Rev Neurotherapeutics 2006; 6: 397–406

    Google Scholar 

  3. Kwan P, Arzimanoglou A, Berg AT, et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 2010; 51: 1069–77

    PubMed  CAS  Google Scholar 

  4. Beyreuther BK, Freitag J, Heers C, et al. Lacosamide: a review of preclinical properties. CNS Drug Rev 2007; 13: 21–42

    PubMed  CAS  Google Scholar 

  5. Errington AC, Stöhr T, Heers C, et al. The investigational anticonvulsant lacosamide selectively enhances slow inactivation of voltage-gated sodium channels. Mol Pharmacol 2008; 73: 157–69

    PubMed  CAS  Google Scholar 

  6. Binder DK. The role of BDNF in epilepsy and other diseases of the mature nervous system. Adv Exp Med Biol 2004; 548: 34–56

    PubMed  CAS  Google Scholar 

  7. Tongiori E, Domenici L, Simonato M. What is the biological significance of BDNF mRNA targeting in the dendrites? Clues from epilepsy and cortical development. Mol Neurobiol 2006; 33: 17–32

    Google Scholar 

  8. Charrier E, Reibel S, Rogemond V, et al. Collapsin response mediator proteins (CRMPs): involvement in nervous system development and adult neurodegenerative disorders. Mol Neurobiol 2003; 28: 51–63

    PubMed  CAS  Google Scholar 

  9. Brandt C, Heile A, Potschka H, et al. Effects of the novel antiepileptic drug lacosamide on the development of amygdala kindling in rats. Epilepsia 2006; 47: 1803–9

    PubMed  CAS  Google Scholar 

  10. Duncan GE, Kohn H. The novel antiepileptic drug lacosamide blocks behavioural and brain metabolic manifestations of seizure activity in the 6 Hz psychomotor seizure model. Epilepsy Res 2005; 67: 81–7

    PubMed  CAS  Google Scholar 

  11. Biton V, Rosenfeld WE, Whitesides J, et al. Intravenous lacosamide as replacement for oral lacosamide in patients with partial-onset seizures. Epilepsia 2008; 49: 123–4

    Google Scholar 

  12. Kropeit D, Schiltmeyer B, Cawello W, et al. Bioequivalence od short-time infusions compared to oral administration of SPM927 [abstract]. Epilepsia 2004; 45 Suppl. 7: 123

    Google Scholar 

  13. Bialer M, Johannessen SI, Kepferberg HJ, et al. Progress report on new antiepileptic drugs: a summary of the Seventh Eilat Conference (EILAT VII). Epilepsy Res 2004; 61: 1–48

    PubMed  Google Scholar 

  14. Horstmann R, Bonn R, Cawello W, et al. Basic clinical pharmacological investigations of the new antiepileptic drug SPM 927 [abstract]. Epilepsia 2002; 43 Suppl. 7: 188

    Google Scholar 

  15. Bialer M, Johannessen SJ, Kupferberg HJ, et al. Progress report on new antiepileptic drugs: a summary of the Eight Eilat Conference (EILAT VIII). Epilepsy Res 2007; 73: 1–52

    PubMed  Google Scholar 

  16. Cross SA, Curran MP. Lacosamide in partial-onset seizures. Drugs 2009; 69: 449–59

    PubMed  CAS  Google Scholar 

  17. Vimpat® (lacosamide): US prescribing information. Smyrna (GA): UCB, Inc., 2008 [online]. Available from URL: http://www.vimpat.com/hcp/pdfs/VIMPAT%20PI.pdf [Accessed 2010 Oct 13]

  18. Ben-Menachem E, Biton V, Jatuzis D, et al. Efficacy and safety of oral lacosamide as adjunctive therapy in adults with partial-onset seizures. Epilepsia 2007; 48: 1308–17

    PubMed  CAS  Google Scholar 

  19. Halasz P, Kalviainen R, Mazurkiewicz-Beldzinska M, et al. Adjunctive lacosamide for partial-onset seizures: efficacy and safety results from a randomized controlled trial. Epilepsia 2009; 50: 443–53

    PubMed  CAS  Google Scholar 

  20. Chung SS, Sperling M, Biton V, et al., on behalf of the SP754 Study Group. Lacosamide as adjunctive therapy for partial-onset seizures: a randomized controlled trial. Epilepsia 2010; 51: 958–67

    PubMed  CAS  Google Scholar 

  21. Shaibani A, Fares S, Salah S, et al. Lacosamide in painful diabetic neuropathy: an 18-week double-blind placebo-controlled trial. J Pain 2009; 10: 818–28

    PubMed  CAS  Google Scholar 

  22. Wymer JP, Simpson J, Sen D, et al. Efficacy and safety of lacosamide in diabetic neuropathic pain: an 18-week double-blind, placebo-controlled trial of fixed-dose regimens. Clin J Pain 2009; 25: 376–85

    PubMed  Google Scholar 

  23. Kennebäck G, Bergfeldt L, Vallin H, et al. Electrophysiologic effects and clinical hazards of carbamazepine treatment for neurologic disorders in patients with abnormalities of the cardiac conduction system. Am Heart J 1991; 121: 1421–9

    PubMed  Google Scholar 

  24. Matsuo F, Bergen D, Faught E, et al. Placebo-controlled study of the efficacy and safety of lamotrigine in patients with partial seizures: US Lamotrigine Protocol 0.5 Clinical Trial Group. Neurology 1993; 43: 2284–91

    PubMed  CAS  Google Scholar 

  25. Kennebäck G, Bergfeldt L, Tomson T. Electrophysiological evaluation of the sodium-channel blocker carbamazepine in healthy human subjects. Cardiovasc Drugs Ther 1995; 9: 709–14

    PubMed  Google Scholar 

  26. Laville MA, de la Gastine B, Husson B, et al. Should we care about pregabalin for elderly patients with a history of cardiac dysrhythmia? Rev Med Interne 2008; 29: 152–4

    PubMed  Google Scholar 

  27. DeGiorgio CM. Atrial flutter/atrial fibrillation associated with lacosamide for partial seizures. Epilepsy Behav 2010; 18: 322–4

    PubMed  Google Scholar 

  28. Fountain NB, Krauss G, Isojarvi J, et al. A multicenter, open-label trial to assess the safety and tolerability of a single intravenous loading dose of lacosamide followed by oral maintenance as adjunctive therapy in patients with partial-onset seizures [abstract]. Epilepsia 2010; 51 Suppl. 4: 123

    Google Scholar 

  29. White HS, Franklin MR, Kupferberg HJ, et al. The anti-convulsant profile of rufinamide (CGP 33101) in rodent seizure models. Epilepsia 2008; 49: 1213–20

    PubMed  CAS  Google Scholar 

  30. Bialer M, Johannessen SI, Kupferberg HJ, et al. Progress report on new antiepileptic drugs: a summary of the Fifth Eilat Conference (EILAT V). Epilepsy Res 2001; 43: 11–58

    PubMed  CAS  Google Scholar 

  31. Arroyo S. Rufinamide. Neurotherapeutics 2007; 4: 155–62

    PubMed  CAS  Google Scholar 

  32. Perucca E, Cloyd J, Critchley D, et al. Rufinamide: clinical pharmacokinetics and concentration-response relationships in patients with epilepsy. Epilepsia 2008; 49: 1123–41

    PubMed  CAS  Google Scholar 

  33. Eisai. Banzel™ (rufinamide) tablets: summary of product characteristics [online]. Available from URL: https://www.eisaimedicalinformation.com/emi/docs/Banzel_PI.pdf [Accessed 2010 Sep 23]

  34. Fuseau E, Petricoul O, Critchley D, et al. Population pharmacokinetic drug-drug interaction analyses of rufinamide in patients with epilepsy [abstract]. Epilepsia 2005; 46 Suppl. 8: 210

    Google Scholar 

  35. Critchley D, Fuseau E, Perdomo C, et al. Pharmacokinetic and pharmacodynamic parameters of adjunctive rufinamide in patients with Lennox-Gastaut syndrome [abstract]. Epilepsia 2005; 46 Suppl. 8: 209

    Google Scholar 

  36. Racine A, Rouan MC, Chang SW, et al. Population pharmacokinetics and drug-drug interactions of rufinamide in a multicenter, double-blind, randomized, placebo-controlled, 5-arm parallel trial in patients with partial seizures on up to three concomitant antiepileptic drugs. Epilepsia 2000; 41 Suppl. : 149–50

    Google Scholar 

  37. Palhagan S, Canger R, Henriksen O, et al. Rufinamide: a double-blind, placebo-controlled proof of principle trial in patients with epilepsy. Epilepsy Res 2001; 43: 115–24

    Google Scholar 

  38. Glauser T, Kluger G, Sachdeo R, et al. Rufinamide for generalized seizures associated with Lennox-Gastaut syndrome. Ann Neurol 2008; 70: 1950–8

    CAS  Google Scholar 

  39. Brodie MJ, Rosenfeld WE, Vazquez B, et al. Rufinamide for the adjunctive treatment of partial seizures in adults and adolescents: a randomized placebo-controlled trial. Epilepsia 2009; 50: 1899–909

    PubMed  CAS  Google Scholar 

  40. Elger CE, Hermann S, Mann A, et al. A 24-week multicenter, randomized, double-blind, parallel-group, dose-ranging study of rufinamide in adults and adolescents with inadequately controlled partial seizures. Epilepsy Res 2010; 88: 255–63

    PubMed  CAS  Google Scholar 

  41. Kluger G, Kurlemann G, Haberlandt E, et al. Effectiveness and tolerability of rufinamide in children and adults with refractory epilepsy: first European experience. Epilepsy Behav 2009; 14: 491–5

    PubMed  Google Scholar 

  42. Hancock EC, Cross HJ. Treatment of Lennox-Gastaut syndrome. Cochrane Database Syst Rev 2009; (3): CD003277

  43. Aldenkamp AP, Alpherts WC. The effect of the new antiepileptic drug rufinamide on cognitive function. Epilepsia 2006; 47: 1153–9

    PubMed  CAS  Google Scholar 

  44. Benes J, Parada A, Figueiredo AA, et al. Anticonvulsant and sodium channel-blocking properties of novel 10,11-dihydro-5H-dibenz[b,f]azepine-5-carboxamide derivatives. J Med Chem 1999; 42: 2582–7

    PubMed  CAS  Google Scholar 

  45. Bonifacio MJ, Sheriden RD, Parada A, et al. Interaction of the novel anticonvulsant, BIA 2-093 with voltage-gated sodium channels: comparison with carbamazepine. Epilepsia 2001; 42: 600–8

    PubMed  CAS  Google Scholar 

  46. Parada A, Soares-Da-Silva P. The novel anticonvulsant BIA 2-093 inhibits transmitter release during opening of voltage-gated sodium channels: a comparison with carbamazepine and oxcarbazepine. Neurochem Int 2002; 40: 435–40

    PubMed  CAS  Google Scholar 

  47. Hainzl D, Parada A, Soares-da-Silva P. Metabolism of two new antiepileptic drugs and their principal metabolites S(+) and R(−)-10,11-,dihydro-10-hydroxy carbamazepine. Epilepsy Res 2001; 44: 197–206

    PubMed  CAS  Google Scholar 

  48. Rogawski MA. Diverse mechanisms of antiepileptic drugs in the development pipeline. Epilepsy Res 2006; 69: 273–94

    PubMed  CAS  Google Scholar 

  49. Almeida L, Soares-da-Silva P. Eslicarbazepine acetate (BIA 2-093). Neurother 2007; 4: 88–96

    CAS  Google Scholar 

  50. Almeida L, Potgieter JH, Maia J, et al. Pharmacokinetics of eslicarbazepine acetate in patients with moderate hepatic impairment. Eur J Clin Pharmacol 2008; 64: 267–73

    PubMed  CAS  Google Scholar 

  51. McCormack PL, Robinson DM. Eslicarbazepine acetate. CNS Drugs 2009; 23: 71–9

    PubMed  CAS  Google Scholar 

  52. Maia J, Almeida L, Falcao A, et al. Effect of renal impairment on the pharmacokinetics of eslicarbazepine acetate. Int J Clin Pharmacol Ther 2008; 46: 119–30

    PubMed  CAS  Google Scholar 

  53. European Medicines Agency. Zebinix: summary of product characteristics [online]. Available from URL: http://www.medicines.org.uk/EMC/medicine/22376/SPC/Zebinix+800mg+tablets/ [Accessed 2010 Oct 13]

  54. Perucca E, Falcao A, Maia J, et al. Assessment of the impact of eslicarbazepine acetate on carbamazepine pharmacokinetics at steady-state: a pooled analysis of three placebo-controlled phase III studies [abstract]. Epilepsia 2010; 51 Suppl. 4: 122

    Google Scholar 

  55. Nunes T, Sicard E, Almeida L, et al. Pharmacokinetic interaction study between eslicarbazepine acetate and topiramate in healthy subjects. Curr Med Res Opin 2010; 26: 1355–62

    PubMed  CAS  Google Scholar 

  56. Hufnagel A, Ben-Menachem E, Gabbai AA, et al. Efficacy and safety of eslicarbazepine acetate as add-on treatment in adults with refractory partial-onset seizures: BIA-2093-302 study [abstract]. Epilepsia 2008; 50 Suppl. 4: 104

    Google Scholar 

  57. Elger C, Halácz P, Maia J, et al., on behalf of the BIA-2093-301 Investigators Study Group. Efficacy and safety of eslicarbazpine acetate in adults with refractory partial-onset seizures: a randomized double-blind, placebo-controlled, parallel group phase III study. Epilepsia 2009; 50: 454–63

    PubMed  CAS  Google Scholar 

  58. Gil-Nagel A, Lopes-Lima J, Almeida L, et al., on behalf of the BIA-2093-303 Investigators Study Group. Efficacy and safety of 600 and 1200mg eslicarbazepine acetate as adjunctive treatment in adults with refractory partial-onset seizures. Acta Neurol Scand 2009; 120: 281–7

    PubMed  CAS  Google Scholar 

  59. Elger C, Bialer M, Cramer JA, et al. Eslicarbazepine acetate: a double-blind add-on, placebo-controlled exploratory trial in adult patients with partial-onset seizures. Epilepsia 2007; 48: 497–504

    PubMed  CAS  Google Scholar 

  60. Halász P, Cramer JA, Hodoba D, et al., on behalf of the BIA-2093-301 Study Group. Long-term efficacy and safety of eslicarbazepine acetate: results of a 1-year open-label extension study in partial-onset seizures in adults with epilepsy. Epilepsia 2010 Oct; 51(10): 1963–9

    PubMed  Google Scholar 

  61. Cramer J, Hodoba D, Ben-Menachem E, et al. Depressive symptoms improve with 1-year eslicarbazepine acetate treatment: a pooled analysis of 3 open-label extensions of phase III studies in patients with partial-onset seizures [abstract]. Epilepsia 2010; 51 Suppl. 4: 117

    Google Scholar 

  62. Bialer M, Johannessen S, Levy R, et al. Progress report on new antiepileptic drugs: a summary of the Ninth Eilat Conference (EILAT IX). Epilepsy Res 2009; 83: 1–43

    PubMed  Google Scholar 

  63. Chung SS. Third-generation antiepileptic drugs for partial-onset seizures: lacosamide, retigabine, and eslicarbazepine acetate. Eur J Neurol 2009; 1: 1–11

    Google Scholar 

  64. Rundfeldt C, Netzer R. The novel anticonvulsant retigabine activates M-currents in Chinese hamster ovary-cells tranfected with human KCNQ2/3 subunits. Neurosci Lett 2000; 282: 73–6

    PubMed  CAS  Google Scholar 

  65. Rogawski MA. KCNQ2/KCNQ3 K+ channels and the molecular pathogenesis of epilepsy: implications for therapy. Trends Neurosci 2000; 23: 393–8

    PubMed  CAS  Google Scholar 

  66. Delmas P, Brown DA. Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci 2005; 6: 850–62

    PubMed  CAS  Google Scholar 

  67. Maljevic S, Wuttke TV, Lerche H. Nervous system KV7 disorders: breakdown of a subthreshold brake. J Physiol 2008; 586: 1791–801

    PubMed  CAS  Google Scholar 

  68. Wuttke TV, Seebohm G, Bail S, et al. The new anticonvulsant retigabine favors voltage-dependent opening of the Kv7.2 (KCNQ2) channel by binding to is activation gate. Mol Pharmacol 2005; 67: 1009–17

    PubMed  CAS  Google Scholar 

  69. Schenzer A, Friedrich T, Pusch M, et al. Molecular determinants of KCNQ (Kv7) K+ channel sensitivity to the anticonvulsant retigabine. J Neurosci 2005; 25: 5051–60

    PubMed  CAS  Google Scholar 

  70. Lange W, Geissendörfer J, Schenzer A, et al. Refinement of the binding site and mode of action of the anticonvulsant retigabine on KCNQ K+ channels. Mol Pharmacol 2009; 75: 272–80

    PubMed  CAS  Google Scholar 

  71. Bievert C, Schroeder BC, Kubisch C, et al. A potassium channel mutation in neonatal human epilepsy. Science 1998; 279: 403–6

    Google Scholar 

  72. Singh NA, Charlier C, Stauffer D, et al. A novel potassium channel gene, KCN2, is mutated in an inherited epilepsy of newborns. Nat Genet 1998; 18: 25–9

    PubMed  CAS  Google Scholar 

  73. Charlier C, Singh NA, Ryan SG, et al. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat Genet 1998; 18: 53–5

    PubMed  CAS  Google Scholar 

  74. Jentsch TJ, Schroeder BC, Kubisch C, et al. Pathophysiology of KCNQ channels: neonatal epilepsy and progressive deafness. Epilepsia 2000; 41: 1068–9

    PubMed  CAS  Google Scholar 

  75. Neubauer BA, Waldegger S, Heinzinger J, et al. KCNQ2 and KCNQ3 mutations contribute to different idiopathic epilepsy syndromes. Neurology 2008; 71: 177–83

    PubMed  CAS  Google Scholar 

  76. Meldrum BS, Rogawski MA. Molecular targets for anti-epileptic drug development. Neurotherapeutics 2007; 4: 18–61

    PubMed  CAS  Google Scholar 

  77. Benarroch EE. Potassium channels: brief overview and implications in epilepsy. Neurology 2009; 72: 664–9

    PubMed  Google Scholar 

  78. Blackburn-Munro G, Jensen BS. The anticonvulsant retigabine attenuates nociceptive behaviours in rat models of persistent and neuropathic pain. Eur J Pharmacol 2003; 460: 109–16

    PubMed  CAS  Google Scholar 

  79. Korsgaard MP, Hartz BP, Brown WD, et al. Anxiolytic effects of Maxipost (BMS-204352) and retigabine via activation of neuronal Kv7 channels. J Pharmacol Exp Ther 2005; 314: 282–92

    PubMed  CAS  Google Scholar 

  80. Dencker D, Dias R, Pedersen ML, et al. Effect of the new antiepileptic drug retigabine in a rodent model of mania. Epilepsy Behav 2008; 12: 49–53

    PubMed  Google Scholar 

  81. Tatulian L, Delmas P, Abogadie FC, et al. Activation of expressed KCNQ potassium currents and native neuronal M-type potassium currents by the anti-convulsant drug retigabine. J Neurosci 2001; 21: 5535–45

    PubMed  CAS  Google Scholar 

  82. Dailey JW, Cheong JH, Ko KH, et al. Anticonvulsant properties of D-20443 in genetically epilepsy-prone rats: prediction of clinical response. Neurosci Lett 1995; 195: 77–80

    PubMed  CAS  Google Scholar 

  83. Tober C, Rostock A, Bartsch R. D-23129: a potent anticonvulsant in the amygdala kindling model of complex partial seizures. Eur J Pharmacol 1996; 303: 163–9

    PubMed  CAS  Google Scholar 

  84. Rostock A, Tober C, Rundfeldt C, et al. D-23129: a new anticonvulsant with a broad spectrum activity in animal models of epileptic seizures. Epilepsy Res 1996; 23: 211–23

    PubMed  CAS  Google Scholar 

  85. Sotty F, Damgaard T, Montezinho L, et al. Antipsychotic-like effect of retigabine [N-(2-amino-4-(fluorobenzylamino)-phenyl) carbamic acid ester]: a KCNQ potassium channel opener, via modulation of mesolimbic dopaminergic neurotransmission. J Pharmacol Exp Ther 2009; 328: 951–62

    PubMed  CAS  Google Scholar 

  86. Roza C, Lopez-Garcia JA. Retigabine, the specific KCNQ channel opener, blocks ectopic discharges in axomitized sensory fibres. Pain 2008; 138: 537–45

    PubMed  CAS  Google Scholar 

  87. Hermann R, Ferron GM, Erb K, et al. Effects of age and sex on the disposition of retigabine. Clin Pharmacol Ther 2003; 73: 61–70

    PubMed  CAS  Google Scholar 

  88. Ferron GM, Paul J, Fruncillo R, et al. Multiple-dose, linear dose-proportional pharmacokinetics of retigabine in healthy volunteers. J Clin Pharmacol 2002; 42: 175–82

    PubMed  CAS  Google Scholar 

  89. Ferron GM, Patat A, Parks V, et al. Lack of pharmacokinetic interaction between retigabine and phenobarbitone at steady-state in healthy subjects. Br J Clin Pharmacol 2003; 56: 39–45

    PubMed  CAS  Google Scholar 

  90. McNeilly PJ, Torchin CD, Andreson LW, et al. In vitro glucuronidation of D-23129, a new anticonvulsant, by human liver microsomes and liver slices. Xenobiotica 1997; 5: 431–41

    Google Scholar 

  91. Hempel R, Schupke H, Mcneilly PJ, et al. Metabolism of retigabine (D-23129), a novel anticonvulsant drug. Drug Metab Dispos 1999; 27: 613–22

    PubMed  CAS  Google Scholar 

  92. Brodie MJ, Lerche H, Gil-Nagel A, et al., on behalf of the RESTORE 2 Study Group. Efficacy and safety of adjunctive ezogabine (retigabine) in refractory partial epilepsy. Neurology. Epub 2010 Oct 13

  93. Bialer M, Johannessen SI, Kupferberg HJ, et al. Progress report on new antiepileptic drugs: a summary of the Fourth Eilat Conference (EILAT IV). Epilepsy Res 1999; 34: 1–41

    PubMed  CAS  Google Scholar 

  94. Hovinga CA. SPM-927 (Schwarz Pharma). Drugs 2003; 6: 479–85

    CAS  Google Scholar 

  95. Tompson DJ, VanLandingham KE. The effects of retigabine on the pharmacokinetics of concomitantly administered antiepileptic drugs [abstract]. Epilepsia 2010; 51 Suppl. 4: 123

    Google Scholar 

  96. Ferron GM, Sachdeo R, Partiot A, et al. Pharmacokinetic interaction between valproic acid, topiramate, phenytoin or carbamazepine and retigabine in epileptic patients [abstract]. Clin Pharmacol Ther 2001; 63: 18

    Google Scholar 

  97. Hermann R, Knebel NG, Niebch G, et al. Pharmacokinetic interaction between retigabine and lamotrigine in healthy subjects. Eur J Clin Pharmacol 2003; 58: 795–802

    PubMed  CAS  Google Scholar 

  98. Paul J, Ferron GM, Richards L, et al. Retigabine does not alter the pharmacokinetics of a low-dose oral contraceptive in women. Neurology 2001; 56 Suppl. 3: A335–6

    Google Scholar 

  99. Porter RJ, Partiot A, Sachdeo R, et al. Randomized, multicenter, dose-ranging trial of retigabine for partial-onset seizures. Neurology 2007; 68: 1197–204

    PubMed  CAS  Google Scholar 

  100. French J, Mansbach H, RESTORE 1 Investigators. 1200mg/day retigabine as adjunctive therapy in adults with refractory partial-onset seizures. Epilepsia 2008; 49: 112–3

    Google Scholar 

  101. Kushida CA, Becker PM, Ellenbogen AL, et al. Randomized, double-blind, placebo-controlled study of XP13512/ GSK1838262 in patients with RLS. Neurology 2009; 72: 439–46

    PubMed  CAS  Google Scholar 

  102. Kwan P, Brodie MJ. Emerging drugs for epilepsy. Expert Opin Emerg Drugs 2007; 12: 407–22

    PubMed  CAS  Google Scholar 

  103. Kenda BM, Matagne A, Talaga PE, et al. Discovery of 4 substituted pyrolidone butanamides as new agents with significant antiepileptic activity. J Med Chem 2004; 47: 530–49

    PubMed  CAS  Google Scholar 

  104. Niespoziany I, Leclere N, Matagne A, et al. Brivaracetam modulates Na+ currents expressed in a neuroblastoma cell line: comparison with carbamazepine. Epilepsia 2010; 51 Suppl. 4: 149–50

    Google Scholar 

  105. Matagne A, Margineau DG, Kenda B, et al. Anti-convulsive and anti-epileptic properties of brivaracetam (ucb 34714), a high-affinity ligand for the synaptic vesicle protein, SV2A. Br J Pharmacol 2008; 154: 1662–71

    PubMed  CAS  Google Scholar 

  106. Von Rosensteil P. Brivaracetam (ucb 34714). Neurotherapeutics 2007; 4: 84–7

    Google Scholar 

  107. Margineau DG, Klitgaard H. Brivaracetam inhibits spreading depression in rat neocortical slices in vitro. Seizure 2009; 18:453–6

    Google Scholar 

  108. Rolan P, Sargentini-Maier ML, Pigeolet E, et al. The pharmacokinetics, CNS pharmacodynamics and adverse event profile of brivaracetam after multiple increasing oral doses in healthy men. Br J Clin Pharmacol 2008; 66: 71–5

    PubMed  CAS  Google Scholar 

  109. Sargentini-Maier ML, Rolan P, Connell J, et al. The pharmacokinetics, CNS pharmacodynamics and adverse event profile of brivaracetam after single increasing oral doses in healthy males. Br J Clin Pharmacol 2007; 63: 680–8

    PubMed  CAS  Google Scholar 

  110. Sargentini-Maier ML, Espié P, Coquette A, et al. Pharmacokinetics and metabolism of [14C]-brivaracetam, a novel SV2A ligand, in healthy subjects. Drug Metab Dispos 2008; 36: 36–45

    PubMed  CAS  Google Scholar 

  111. French JA, Costantini C, Brodsky A, et al., on behalf of the N01193 Study Group. Adjunctive brivaracetam for refractory partial-onset seizures: a randomized, controlled trial. Neurology 2010; 75: 519–25

    PubMed  CAS  Google Scholar 

  112. Van Paesschen W, von Rosentiel P. Efficacy and tolerability of brivaracetam as adjunctive treatment for adults with refractory partial-onset epilepsy: platform session 064. 27th International Epilepsy Congress; 2007 Jul 8–12; Singapore

  113. Werkahn KJ, Biton V, Johnson ME, et al., on behalf of the N01252 and N01253 Brivaracetam Study Groups. Adjunctive brivaracetam in adults with uncontrolled focal epilepsy: results from two randomized, double-blind, placebo-controlled trials [abstract]. Epilepsia 2010; 51 Suppl. 4: 150

    Google Scholar 

  114. Kasteleijn-Nolst Trenite DG, Genton P, Parain D, et al. Evaluation of brivaracetam, a novel SV2A ligand, in the photosensitivity model. Neurology 2007; 69: 1027–34

    PubMed  CAS  Google Scholar 

  115. Luszczki JL. Third-generation antiepileptic drugs: mechanisms of action, pharmacokinetics and interactions. Pharm Rep 2009; 61: 197–216

    CAS  Google Scholar 

  116. Kwan P, Johnson ME, Merschemke M, et al., on behalf of the N01254 Brivaracetam Study Group. Safety and tolerability of adjunctive brivaracetam in adults with uncontrolled epilepsy: randomized, double-blind, placebo-controlled trial. [abstract]. Epilepsia 2010; 51 Suppl. 4: 152

    Google Scholar 

  117. Bialer M, White HS. Key factors in the discovery and development of new antiepileptic drugs. Nat Rev Drug Discov 2010; 9: 68–82

    PubMed  CAS  Google Scholar 

  118. US National Institutes of Health. Perampanel [online]. Available from URL: http://www.clinicaltrials.gov/ct2/results?term=perampanel [Accessed 2010 Sep 23]

  119. Rogawski MA, Donevan SD. AMPA receptors in epilepsy and as targets for antiepileptic drugs. Adv Neurol 1999; 79: 947–63

    PubMed  CAS  Google Scholar 

  120. Rogawski MA, Kurzman PS, Yamaguchi SI, et al. Role of AMPA and GluR5 kainate receptors in the development and expression of amygdala kindling in the mouse. Neuropharmacology 2001; 40: 28–35

    PubMed  CAS  Google Scholar 

  121. Gottwald MF, Aminoff MJ. New frontiers in the pharmacological management of Parkinson’s. Drugs Today 2008; 44: 531–45

    PubMed  CAS  Google Scholar 

  122. Eisai Co Ltd. Status of the E2007 (perampanel) Development Program: termination of Parkinson’s disease clinical development and focus on neuropathic pain and epilepsy indications [media release]. 2008 Apr 11 [online]. Available from URL: http://www.eisai.co.jp/enews/enews200819.html [Accessed 2010 Sep 23]

  123. Hashizume Y, Hanada T, Ogassawara A, et al. Anti-convulsant activity of perampanel, a selective AMPA receptor antagonist, in rodent models of epileptic seizure [abstract no. P02.113]. American Academy of Neurology Meeting; 2008 Apr 12–19; Chicago (IL). Available from URL: http://www.abstracts2view.com/aan2008chicago/view.php?nu=AAN08L_P02.113 [Accessed 2010 Sep 23]

  124. Templeton D. Pharmacokinetics of peramapanel, a highly selective AMPA-type glutamate receptor antagonist following once- and multiple-daily dosing [abstract]. Epilepsia 2010; 51 Suppl. 4: 70

    Google Scholar 

  125. Krauss G, Yang J, Biton V, et al. Determination of maximum tolerated dose (MTD), safety, efficacy, and pharmacokinetics (PK) of perampanel, a selective AMPA receptor antagonist, as adjunctive therapy in subjects with refractory partial seizures [abstract]. Epilepsia 2008; 49 Suppl. 7: 1.106 [online]. Available from URL: http://www.aesnet.org/go/publications/aes-abstracts/abstract-search/mode/display/st/krauss/sy/2008/sb/Authors/id/8447 [Accessed 2010 Oct 13]

    Google Scholar 

  126. Eisai Co. Ltd. Status of the E2007 (perampanel) Development Program: termination of Parkinson’s disease clinical development and focus on neuropathic pain and epilepsy indications [media release]. 2008 Apr 11 [online]. Available from URL: http://www.eisai.co.jp/enews/enews200819.html [Accessed 2010 Oct 13]

  127. US National Institute of Health. Evaluating efficacy and safety of E2007 (perampanel) given as adjunctive therapy in subjects with refractory partial seizures [online]. Available from URL: http://clinicaltrialsfeeds.org/clinical-trials/show/NCT00700310 [Accessed 2010 Jul]

  128. Ganaxolone (CCD 1042): investigational drug brochure. Irvine (CA): CoCensys Inc., 1996

  129. Selye H. The antagonism between anesthetic steroid hormones and pentamethylenetetrazol (Metrazol). J Lab Clin Med 1942; 27: 1051–3

    CAS  Google Scholar 

  130. Figdor SK, Kodet MJ, Bloom BM, et al. Central activity and structure in a series of water-soluble steroids. J Pharmacol Exp Ther 1957; 119: 299–309

    PubMed  CAS  Google Scholar 

  131. Craig CR. Antiepileptic activity of steroids: separability of antiepileptic from hormonal effects. J Pharmacol Exp Ther 1966; 153: 337–43

    CAS  Google Scholar 

  132. Gee KW, McCauley LD, Nan LC. A putative receptor for neurosteroids on the GABAA receptor complex: the pharmacological properties and therapeutic potential of epalons. Crit Rev Neurobiol 1995; 9: 207–27

    PubMed  CAS  Google Scholar 

  133. Carter RB, Wood PL, Wieland S, et al. Characterization of the anticonvulsant properties of ganaxolone (CCD 1042; 3α-hydroxy-3β-methyl-5α-pregnan-20-one), a selective high-affinity steroid modulator of the GABAA receptor. J Pharmacol Exp Ther 1997; 280: 1284–95

    PubMed  CAS  Google Scholar 

  134. Gasior M, Carter RB, Goldberg SR, et al. Anticonvulsant and behavioral effects of neuroactive steroids alone and in conjunction with diazepam. J Pharmacol Exp Ther 1997; 282: 543–53

    PubMed  CAS  Google Scholar 

  135. Beekman M, Ungard JT, Gasior M, et al. Reversal of behavioural effects of pentylenetetrazol by the neuroactive steroid ganaxolone. J Pharmacol Exp Ther 1998; 284: 868–77

    PubMed  CAS  Google Scholar 

  136. Reddy DS. The role of neurosteroids in the pathophysiology and treatment of catamenial epilepsy. Epilepsy Res 2009; 85: 1–30

    PubMed  CAS  Google Scholar 

  137. Robichaud M, Debonnel G. Allopregnanolone and ganaxolone increase the firing activity of dorsal raphe nucleus serotonergic neurons in female rats. Int J Neuropsychopharmacol 2006; 9: 191–200

    PubMed  CAS  Google Scholar 

  138. Monaghan EP, Navalta LA, Shum L, et al. Initial human experience with ganaxolone, a neuroactive steroid with antiepileptic activity. Epilepsia 1997; 38: 1026–31

    PubMed  CAS  Google Scholar 

  139. Nohria V, Giller E. Ganaxolone. Neurotherapeutics 2007; 4: 102–5

    PubMed  CAS  Google Scholar 

  140. Pieribone VA, Tsai J, Soufflet C, et al. Clinical evaluation of ganaxolone in pediatric and adolescent patients with refractory epilepsy. Epilepsia 2007; 48: 1870–4

    PubMed  CAS  Google Scholar 

  141. Kerrigan JF, Shields WD, Nelson TY, et al. Ganaxolone for treating intractable infantile spasms: a multicenter, open-label, add-on trial. Epilepsy Res 2000; 42: 133–9

    PubMed  CAS  Google Scholar 

  142. Laxer K, Blum D, Abou-Khalil BW, et al. Assessment of ganaxolone’s anticonvulsant activity using a randomized, double-blind, presurgical trial design. Epilepsia 2000; 41: 1187–94

    PubMed  CAS  Google Scholar 

  143. McAuley JW, Moore JL, Reeves AL, et al. A pilot study of the neurosteroid ganaxolone in catamenial epilepsy: clinical experience in two patients [abstract]. Epilepsia 2001; 42 Suppl. 7: 85

    Google Scholar 

  144. Kwan P, Schachter SC, Brodie MJ. Drug-resistant epilepsy. N Engl J Med. In press

  145. Callaghan BC, Anand K, Hesdorffer D, et al. Likelihood of seizure remission in adult population with refractory epilepsy. Ann Neurol 2007; 62: 382–9

    PubMed  Google Scholar 

  146. Luciano AL, Shorvon SD. Results of treatment changes in patients with apparently drug-resistant chronic epilepsy. Ann Neurol 2007; 62: 375–81

    PubMed  CAS  Google Scholar 

  147. Schiller Y, Najjar Y. Quantifying response to antiepileptic drugs: effect of past treatment testing. Neurology 2008; 70: 54–65

    PubMed  Google Scholar 

  148. Brodie MJ, Bamagous G, Kwan P. Improved outcomes in newly diagnosed epilepsy. Epilepsia 2009; 50 Suppl. 11: 411–2

    Google Scholar 

  149. Beyenburg S, Stavern K, Schmidt D. Placebo-corrected efficacy of modern antiepileptic drugs for refractory epilepsy: systematic review and meta-analysis. Epilepsia 2010; 51: 7–26

    PubMed  CAS  Google Scholar 

  150. Gazzola DM, Balcer LJ, French JA. Seizure-free outcomes in randomized add-on trials of new antiepileptic drugs. Epilepsia 2007; 48: 1303–7

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Prof. Brodie serves on the scientific advisory boards of Pfizer, UCB Pharma, Eisai, GlaxoSmithKline, Valeant Pharmaceuticals, Sierra Neuropharmaceuticals and Medtronic. He has accepted honoraria for speaking on behalf of Pfizer, UCB, Eisia, GlaxoSmithKline and Valeant Pharmaceuticals. He has received research grants from Pfizer, UCB Pharma and Eisai within the past 3 years. Dr Stephen has accepted honoraria for speaking on behalf of Eisai, GlaxoSmithKline and Sanofi-Aventis. No sources of funding were used to prepare this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Brodie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stephen, L.J., Brodie, M.J. Pharmacotherapy of Epilepsy. CNS Drugs 25, 89–107 (2011). https://doi.org/10.2165/11584860-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11584860-000000000-00000

Keywords

Navigation