Skip to main content
Log in

Green Tea Polyphenols

Promising Substances for Prostate Cancer Chemoprevention

  • Review Article
  • Published:
Evidence-Based Integrative Medicine

Abstract

Basic research has identified some nutrients as agents that inhibit mutagenesis and hyperproliferation, as well as some that induce apoptosis or differentiation, which are critical characteristics for chemoprevention regardless of the nutrient’s specific molecular targets. Some of the most promising nutrients identified as chemopreventive agents in prostate cancer are green tea polyphenols. The components of green tea are epigallocatechin-3-gallate [(−)-EGCG], epigallocatechin [(−)-EGC], epicatechin-3-gallate [(−)-ECG], epicatechin [(−)-EC] and their epimers (−)-GCG, (−)-CG, (−)-GC and (−)-C. Of these components, (−)-EGCG has been the most extensively investigated because of its relative abundance and strong cancer-preventive properties. Recently, several epidemiological, animal and laboratory studies have demonstrated the cancer-preventive properties of green tea polyphenols, specifically in prostate cancer. This article reviews the evidence to date in the role of green tea polyphenols in prostate cancer, and the future directions of this field of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Cancer facts and figures. Atlanta (GA): American Cancer Society, 2005

  2. Nam S, Smith DM, Dou QP. Ester bond-containing tea polyphenols potently inhibit proteasome activity in vitro and in vivo. J Biol Chem 2001; 276(16): 13322–30

    Article  PubMed  CAS  Google Scholar 

  3. Kazi A, Smith DM, Daniel KG, et al. Potential molecular targets of tea polyphenols in human cancer: significance in cancer prevention (invited review). In Vivo 2002; 16: 1–7

    Google Scholar 

  4. Kazi A, Wang Z, Kumar N, Falsetti SC, Chan TH, Dou QP. Structure-activity relationships of synthetic analogs of (−)-epigallocatechin-3-gallate as proteasome inhibitors. Anticancer Res 2004 Mar–Apr; 24(2B): 943–54

    PubMed  CAS  Google Scholar 

  5. Moyers SB, Kumar NB. Green tea polyphenols and cancer chemoprevention: multiple mechanisms and endpoints for phase II trials. Nutr Rev 2004 May; 62(5): 204–11

    Article  PubMed  Google Scholar 

  6. Ahmad N, Mukhtar H. Cutaneous photochemoprotection by green tea: a brief review. Skin Pharmacol Appl Skin Physiol 2001; 14(2): 69–76

    Article  PubMed  CAS  Google Scholar 

  7. Bishara T, Ramnani DM, Epstein JI. High-grade prostatic intraepithelial neoplasia on needle biopsy: risk of cancer on repeat biopsy related to number of involved cores and morphologic pattern. Am J Surg Pathol 2004; 28: 629–33

    Article  PubMed  Google Scholar 

  8. Kronz JD, Allan CH, Shaikh AA, et al. Predicting cancer following a diagnosis of high-grade prostatic intraepithelial neoplasia on needle biopsy: data on men with more than one follow-up biopsy. Am J Surg Pathol 2001 Aug; 25(8): 1079–85

    Article  PubMed  CAS  Google Scholar 

  9. Chow HH, Hakim IA, Vining DR, et al. Effects of dosing condition on the oral bioavailability of green tea catechins after single-dose administration of Polyphenon E in healthy individuals. Clin Cancer Res 2005 Jun 15; 11(12): 4627–33

    Article  PubMed  CAS  Google Scholar 

  10. Bostwick DG, Qian J. High-grade prostatic intraepithelial neoplasia. Mod Pathol 2004 Mar; 17(3): 360–79

    Article  PubMed  Google Scholar 

  11. Bostwick DG, Burke HB, Djakiew D, et al. Human prostate cancer risk factors. Cancer 2004 Nov 15; 101(10 Suppl.): 2371–490

    Article  PubMed  CAS  Google Scholar 

  12. Gokden N, Roehl KA, Catalona WJ, et al. High-grade prostatic intraepithelial neoplasia in needle biopsy as risk factor for detection of adenocarcinoma: current level of risk in screening population. Urology 2005 Mar; 65(3): 538–42

    Article  PubMed  Google Scholar 

  13. Naya Y, Ayala AG, Tamboli P, et al. Can the number of cores with high-grade prostate intraepithelial neoplasia predict cancer in men who undergo repeat biopsy? Urology 2004 Mar; 63(3): 503–8

    Article  PubMed  Google Scholar 

  14. San Francisco IF, Olumi AF, Kao J, et al. Clinical management of prostatic intraepithelial neoplasia as diagnosed by extended needle biopsies. BJU Int 2003 Mar; 91(4): 350–4

    Article  PubMed  CAS  Google Scholar 

  15. Kumar NB, Cantor A, Allen K, et al. The specific role of isoflavones in reducing prostate cancer risk. Prostate 2004; 59(2): 141–7

    Article  PubMed  CAS  Google Scholar 

  16. Office of Dietary Supplements, National Institutes of Health. Botanical dietary supplements: background information [online]. Available from URL: http://ods.od.nih.gov/factsheets/BotanicalBackground.asp#h2 [Accessed 2005 Jun 3]

  17. Sabar R, Kaye AD, Frost EA. Perioperative considerations for the patient taking herbal medicines. Heart Dis 2001; 3: 87–96

    Article  PubMed  CAS  Google Scholar 

  18. Kumar NB, Hopkins K, Allen K, et al. Use of complementary/integrative nutritional therapies during cancer treatment: implications in clinical practice. Cancer Control 2002; 9: 236–43

    PubMed  Google Scholar 

  19. Newman V, Rock CL, Faerber S, et al. Dietary supplement use by women at risk for breast cancer recurrence: the Women’s Healthy Eating and Living Study Group. J Am Diet Assoc 1998; 98: 285–92

    Article  PubMed  CAS  Google Scholar 

  20. Morris KT, Johnson N, Homer L, et al. A comparison of complementary therapy use between breast cancer patients and patients with other primary tumor sites. Am J Surg 2000; 179: 407–11

    Article  PubMed  CAS  Google Scholar 

  21. Sawyer MG, Gannoni AF, Toogood IR, et al. The use of alternative therapies by children with cancer. Med J Aust 1994; 160: 320–2

    PubMed  CAS  Google Scholar 

  22. Lippert MC, McClain R, Boyd JC, et al. Alternative medicine use in patients with localized prostate carcinoma treated with curative intent. Cancer 1999; 86: 2642–8

    Article  PubMed  CAS  Google Scholar 

  23. Burstein HJ, Gelber S, Guadagnoli E, et al. Use of alternative medicine by women with early-stage breast cancer. N Engl J Med 1999; 340: 1733–9

    Article  PubMed  CAS  Google Scholar 

  24. Nam RK, Fleshner N, Rakovitch E, et al. Prevalence and patterns of the use of complementary therapies among prostate cancer patients: an epidemiological analysis. J Urol 1999; 161: 1521–4

    Article  PubMed  CAS  Google Scholar 

  25. Gurley BJ, Gardner SF, Hubbard MA. Content versus label claims in ephedracontaining dietary supplements. Am J Health Syst Pharm 2000; 57: 963–9

    PubMed  CAS  Google Scholar 

  26. Fujiki H. Two stages of cancer prevention with green tea. J Cancer Res Clin Oncol 1999; 125: 589–97

    Article  PubMed  CAS  Google Scholar 

  27. Yang CS. Tea and health. Nutrition 1999; 15: 946–9

    Article  PubMed  CAS  Google Scholar 

  28. Ahmad N, Mukhtar H. Green tea polyphenols and cancer: biologic mechanisms and practical implications. Nutr Rev 1999; 57: 78–83

    Article  PubMed  CAS  Google Scholar 

  29. Bushman JL. Green tea and cancer in humans: a review of the literature. Nutr Cancer 1998; 31(3): 151–9

    Article  PubMed  CAS  Google Scholar 

  30. Nelson WG. Agents in development for prostate cancer prevention. Expert Opin Investig Drugs 2004 Dec; 13(12): 1541–54

    Article  PubMed  CAS  Google Scholar 

  31. Jian L, Xie LP, Lee AH, et al. Protective effect of green tea against prostate cancer: a case-control study in southeast China. Int J Cancer 2004 Jan 1; 108(1): 130–5

    Article  PubMed  CAS  Google Scholar 

  32. Gupta S, Hastak K, Ahmad N, et al. Inhibition of prostate carcinogenesis in TRAMP mice by oral infusion of green tea polyphenols. Proc Natl Acad Sci USA 2001 Aug 28; 98(18): 10350–5

    Article  PubMed  CAS  Google Scholar 

  33. Kazi A, Daniel KG, Smith DM, et al. Inhibition of the proteasome activity, a novel mechanism associated with the tumor cell apoptosis-inducing ability of genistein. Biochem Pharmacol 2003 Sep 15; 66(6): 965–76

    Article  PubMed  CAS  Google Scholar 

  34. Nyska A, Suttie A, Bakshi S, et al. Slowing tumorigenic progression in TRAMP mice and prostatic carcinoma cell lines using natural anti-oxidant from spinach, NAO: a comparative study of three anti-oxidants. Toxicol Pathol 2003 Jan–Feb; 31(1): 31–8

    PubMed  Google Scholar 

  35. Adhami VM, Ahmad N, Mukhtar H. Molecular targets for green tea in prostate cancer prevention. J Nutr 2003 Jul; 133(7 Suppl.): 2417S–24S

    PubMed  CAS  Google Scholar 

  36. Bettuzzi S, Davalli P, Astancolle S, et al. Tumor progression is accompanied by significant changes in the levels of expression of polyamine metabolism regulatory genes and clusterin (sulfated glycoprotein 2) in human CaP specimens [published erratum appears in Cancer Res 2000 Mar 1; 60 (5): 1472]. Cancer Res 2000; 60: 28–34

    PubMed  CAS  Google Scholar 

  37. Leskov KS, Klokov DY, Li J, et al. Synthesis and functional analysis of the nuclear clusterin, a cell death protein. J Biol Chem 2003; 278: 11590–600

    Article  PubMed  CAS  Google Scholar 

  38. Scaltriti M, Brausi M, Amorosi A, et al. Clusterin (SGP-2,ApoJ) expression is downregulated in low-and high-grade human prostate cancer. Int J Cancer 2004; 108: 23–30

    Article  PubMed  CAS  Google Scholar 

  39. Bettuzzi S, Scorcioni F, Astancolle S, et al. Clusterin (SGP-2) transient overexpression decreases proliferation rate of SV40-immortalised human prostate epithelial cells by slowing down cell cycle progression. Oncogene 2002; 21: 4328–34

    Article  PubMed  CAS  Google Scholar 

  40. Grassilli E, Bettuzzi S, Monti D, et al. Studies on the relationship between cell proliferation and cell death: opposite patterns of SGP-2 and ornithine decarboxylase mRNA accumulation in PHA-stimulated human lymphocytes. Biochem Biophys Res Commun 1991; 180: 59–63

    Article  PubMed  CAS  Google Scholar 

  41. July LV, Akbari M, Zellweger T, et al. Clusterin expression is significantly enhanced in CaP cells following androgen withdrawal therapy. Prostate 2002; 50: 179–88

    Article  PubMed  CAS  Google Scholar 

  42. Pucci S, Bonanno E, Pichiorri F, et al. Modulation of different Clusterin isoforms in human colon tumorigenesis. Oncogene 2004; 23: 2298–304

    Article  PubMed  CAS  Google Scholar 

  43. Sartippour MR, Heber D, Ma J, et al. Green tea and its catechins inhibit breast cancer xenografts. Nutr Cancer 2001; 40(2): 149–56

    Article  PubMed  CAS  Google Scholar 

  44. Kavanagh KT, Hafer LJ, Kim DW, et al. Green tea extracts decrease carcinogen-induced mammary tumor burden in rats and rate of breast cancer cell proliferation in culture. J Cell Biochem 2001; 82(3): 387–98

    Article  PubMed  CAS  Google Scholar 

  45. Liao S, Umekita Y, Guo J, et al. Growth inhibition and regression of human prostate and breast tumors in athymic mice by tea epigallocatechin gallate. Cancer Lett 1995; 96: 239–43

    Article  PubMed  CAS  Google Scholar 

  46. Gupta S, Ahmad N, Mohan RR et al. CaP chemoprevention by green tea: in vitro and in vivo inhibition of testosterone-mediated induction of ornithine decarboxylase. Cancer Res 1999; 59: 2115–20

    PubMed  CAS  Google Scholar 

  47. Wang ZY, Huang MT, Ho CT, et al. Inhibitory effect of green tea on the growth of established skin papillomas in mice. Cancer Res 1992; 52: 6657–65

    PubMed  CAS  Google Scholar 

  48. Taniguchi S, Fujiki H, Kobayashi H, et al. Effect of (−)-epigallocatechin gallate, the main constituent of green tea, on lung metastasis with mouse B16 melanoma cell lines. Cancer Lett 1992; 65: 51–4

    Article  PubMed  CAS  Google Scholar 

  49. Pianetti S, Guo S, Kavanagh KT, et al. Green tea polyphenol epigallocatechin-3 gallate inhibits Her-2/neu signaling, proliferation, and transformed phenotype of breast cancer cells. Cancer Res 2002 Feb 1; 62(3): 652–5

    PubMed  CAS  Google Scholar 

  50. Kao YH, Hiipalla RA, Liao S. Modulation of endocrine systems and food intake by green tea epigallocatechin gallate. Endocrinology 2000; 141(3): 980–7

    Article  PubMed  CAS  Google Scholar 

  51. Surh YJ, Chun KS, Cha HH, et al. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res 2001; 480-481: 243–68

    Article  PubMed  CAS  Google Scholar 

  52. Garcia R, Bowman TL, Niu G, et al. Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene 2001 May 3; 20(20): 2499–513

    Article  PubMed  CAS  Google Scholar 

  53. Segev DL, Hoshiya Y, Hoshiya M, et al. Mullerian inhibiting substance regulates NFkappaB signaling and growth of mammary epithelial cells in vivo. J Biol Chem 2001; 276(29): 26799–806

    Article  PubMed  CAS  Google Scholar 

  54. Liang YC, Lin-Shiau SY, Chen CF, et al. Suppression of extracellular signals and cell proliferation through EGF receptor binding by (−)-epigallocatechin gallate in human A431 epidermoid carcinoma cells. J Cell Biochem 1997; 67: 55–65

    Article  PubMed  CAS  Google Scholar 

  55. Chung JY, Huang C, Meng X, et al. Inhibition of activator protein 1 activity and cell growth by purified green tea and black tea polyphenols in H-ras-transformed cells: structure-activity relationship and mechanisms involved. Cancer Res 1999; 59: 4610–7

    PubMed  CAS  Google Scholar 

  56. Liang YC, Lin-Shiau SY, Chen CF, et al. Inhibition of cyclin-dependent kinases 2 and 4 activities as well as induction of Cdk inhibitors p21 and p27 during growth arrest of human breast carcinoma cells by (−)-epigallocatechin-3-gallate. J Cell Biochem 1999; 75: 1–12

    Article  PubMed  CAS  Google Scholar 

  57. Ullmann U, Haller J, Decourt JD, et al. Plasma-kinetic characteristics of purified and isolated green tea catechin epigallocatechin gallate (EGCG) after 10 days repeated dosing in healthy volunteers. Int J Vitam Nutr Res 2004 Jul; 74(4): 269–78

    Article  PubMed  CAS  Google Scholar 

  58. Ullmann U, Haller J, Decourt JP, et al. A single ascending dose study of epigallocatechin gallate in healthy volunteers. J Int Med Res 2003 Mar–Apr; 31(2): 88–101

    PubMed  CAS  Google Scholar 

  59. Chow HH, Cai Y, Hakim IA, et al. Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals. Clin Cancer Res 2003 Aug 15; 9(9): 3312–9

    PubMed  CAS  Google Scholar 

  60. Pisters KMW, Newman RA, Coldman B, et al. Phase I trial of oral green tea extract in adult patients with solid tumors. J Clin Oncol 2001; 19: 1830–8

    PubMed  CAS  Google Scholar 

  61. Bettuzzi S, Brausi M, Rizzi F, et al. Chemoprevention of human prostate cancer by oral administration of green tea catechins (GTCs) in high grade PIN volunteers: a preliminary report from a 1 year proof-of-principle study [abstract presented]. Proceedings of the Annual Meeting of the American Association of Cancer Research; Chicago (IL); 2005

Download references

Acknowledgements

The author has provided no information on sources of funding or on conflicts of interest directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagi B. Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, N.B. Green Tea Polyphenols. Evid-Based-Integrative-Med 2, 13–18 (2005). https://doi.org/10.2165/01197065-200502010-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/01197065-200502010-00004

Keywords

Navigation