Skip to main content
Log in

G Protein-Coupled Receptor Kinases and Hypertension

A Review of Disease Mechanisms

  • Review Article
  • Published:
High Blood Pressure & Cardiovascular Prevention Aims and scope Submit manuscript

Abstract

The understanding of molecular mechanisms of complex physiological phenomena, such as cardiac contractile function or blood pressure homeostasis, has generated the need for a new generation of scientists who must be able to conjugate intrinsic biological mechanisms and clinical manifestations of disease. From this body of knowledge new strategies of disease management or therapeutic tools are derived, creating the ground for translational medicine, which provides the bridge from basic science to the medical arena. The investigation of G protein-coupled receptor kinases in the cardiovascular system is one example of the successful transposition of basic science to the field of heart and vascular disorders.

This review attempts to assemble the currently available information in this continuing area of research for the class of scientists now referred to as ‘translational researchers’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Fig. 2

Similar content being viewed by others

References

  1. Lefkowitz RJ. G protein-coupled receptor kinases. Cell 1993 Aug 13; 74(3): 409–12

    Article  PubMed  CAS  Google Scholar 

  2. Premont RT, Inglese J, Lefkowitz RJ. Protein kinases that phosphorylate activated G protein-coupled receptors. Faseb J 1995 Feb; 9(2): 175–82

    PubMed  CAS  Google Scholar 

  3. Wess J. Molecular basis of receptor/G-protein-coupling selectivity. Pharmacol Ther 1998 Dec; 80(3): 231–64

    Article  PubMed  CAS  Google Scholar 

  4. Vroon A, Kavelaars A, Limmroth V, et al. G protein-coupled receptor kinase 2 in multiple sclerosis and experimental autoimmune encephalomyelitis. J Immunol 2005 Apr 1; 174(7): 4400–6

    PubMed  CAS  Google Scholar 

  5. Kavelaars A, Vroon A, Raatgever RP, et al. Increased acute inflammation, leukotriene B4-induced chemotaxis, and signaling in mice deficient for G protein-coupled receptor kinase 6. J Immunol 2003 Dec 1; 171(11): 6128–34

    PubMed  CAS  Google Scholar 

  6. Shichi H, Somers RL. Light-dependent phosphorylation of rhodopsin: purification and properties of rhodopsin kinase. J Biol Chem 1978 Oct 10; 253(19): 7040–6

    PubMed  CAS  Google Scholar 

  7. Hisatomi O, Matsuda S, Satoh T, et al. A novel subtype of G-protein-coupled receptor kinase, GRK7, in teleost cone photoreceptors. FEBS Lett 1998 Mar 13; 424(3): 159–64

    Article  PubMed  CAS  Google Scholar 

  8. Premont RT, Macrae AD, Stoffel RH, et al. Characterization of the G protein-coupled receptor kinase GRK4: identification of four splice variants. J Biol Chem 1996 Mar 15; 271(11): 6403–10

    Article  PubMed  CAS  Google Scholar 

  9. Benovic JL, Gomez J. Molecular cloning and expression of GRK6: a new member of the G protein-coupled receptor kinase family. J Biol Chem 1993 Sep 15; 268(26): 19521–7

    PubMed  CAS  Google Scholar 

  10. Moepps B, Vatter P, Frodl R, et al. Alternative splicing produces transcripts encoding four variants of mouse G-protein-coupled receptor kinase 6. Genomics 1999 Sep 1; 60(2): 199–209

    Article  PubMed  CAS  Google Scholar 

  11. Parmentier M, Libert F, Schurmans S, et al. Expression of members of the putative olfactory receptor gene family in mammalian germ cells. Nature 1992 Jan 30; 355(6359): 453–5

    Article  PubMed  CAS  Google Scholar 

  12. Weiss ER, Ducceschi MH, Horner TJ, et al. Species-specific differences in expression of G-protein-coupled receptor kinase (GRK) 7 and GRK1 in mammalian cone photoreceptor cells: implications for cone cell phototransduction. J Neurosci 2001 Dec 1; 21(23): 9175–84

    PubMed  CAS  Google Scholar 

  13. Inglese J, Freedman NJ, Koch WJ, et al. Structure and mechanism of the G protein-coupled receptor kinases. J Biol Chem 1993 Nov 15; 268(32): 23735–8

    PubMed  CAS  Google Scholar 

  14. Palczewski K, Buczylko J, Lebioda L, et al. Identification of the N-terminal region in rhodopsin kinase involved in its interaction with rhodopsin. J Biol Chem 1993 Mar 15; 268(8): 6004–13

    PubMed  CAS  Google Scholar 

  15. Lodowski DT, Pitcher JA, Capel WD, et al. Keeping G proteins at bay: a complex between G protein-coupled receptor kinase 2 and Gbetagamma. Science 2003 May 23; 300(5623): 1256–62

    Article  PubMed  CAS  Google Scholar 

  16. Lodowski DT, Tesmer VM, Benovic JL, et al. The structure of G protein-coupled receptor kinase (GRK)-6 defines a second lineage of GRKs. J Biol Chem 2006 Jun 16; 281(24): 16785–93

    Article  PubMed  CAS  Google Scholar 

  17. Vatter P, Stoesser C, Samel I, et al. The variable C-terminal extension of G-protein-coupled receptor kinase 6 constitutes an accessorial autoregulatory domain. Febs J 2005 Dec; 272(23): 6039–51

    Article  PubMed  CAS  Google Scholar 

  18. Penn RB, Pronin AN, Benovic JL. Regulation of G protein-coupled receptor kinases. Trends Cardiovasc Med 2000 Feb; 10(2): 81–9

    Article  PubMed  CAS  Google Scholar 

  19. Stoffel RH, Randall RR, Premont RT, et al. Palmitoylation of G protein-coupled receptor kinase, GRK6: lipid modification diversity in the GRK family. J Biol Chem 1994 Nov 11; 269(45): 27791–4

    PubMed  CAS  Google Scholar 

  20. Koch WJ, Inglese J, Stone WC, et al. The binding site for the beta gamma subunits of heterotrimeric G proteins on the beta-adrenergic receptor kinase. J Biol Chem 1993 Apr 15; 268(11): 8256–60

    PubMed  CAS  Google Scholar 

  21. Lodowski DT, Barnhill JF, Pyskadlo RM, et al. The role of G beta gamma and domain interfaces in the activation of G protein-coupled receptor kinase 2. Biochemistry 2005 May 10; 44(18): 6958–70

    Article  PubMed  CAS  Google Scholar 

  22. Pitcher JA, Inglese J, Higgins JB, et al. Role of beta gamma subunits of G proteins in targeting the beta-adrenergic receptor kinase to membrane-bound receptors. Science 1992 Aug 28; 257(5074): 1264–7

    Article  PubMed  CAS  Google Scholar 

  23. Touhara K, Inglese J, Pitcher JA, et al. Binding of G protein beta gamma-subunits to pleckstrin homology domains. J Biol Chem 1994 Apr 8; 269(14): 10217–20

    PubMed  CAS  Google Scholar 

  24. Kunapuli P, Gurevich VV, Benovic JL. Phospholipid-stimulated autophosphorylation activates the G protein-coupled receptor kinase GRK5. J Biol Chem 1994 Apr 8; 269(14): 10209–12

    PubMed  CAS  Google Scholar 

  25. Onorato JJ, Gillis ME, Liu Y, et al. The beta-adrenergic receptor kinase (GRK2) is regulated by phospholipids. J Biol Chem 1995 Sep 8; 270(36): 21346–53

    Article  PubMed  CAS  Google Scholar 

  26. Rapacciuolo A, Suvarna S, Barki-Harrington L, et al. Protein kinase A and G protein-coupled receptor kinase phosphorylation mediates beta-1 adrenergic receptor endocytosis through different pathways. J Biol Chem 2003 Sep 12; 278(37): 35403–11

    Article  PubMed  CAS  Google Scholar 

  27. Pronin AN, Benovic JL. Regulation of the G protein-coupled receptor kinase GRK5 by protein kinase C. J Biol Chem 1997 Feb 7; 272(6): 3806–12

    Article  PubMed  CAS  Google Scholar 

  28. Shenoy SK, Lefkowitz RJ. Receptor regulation: beta-arrestin moves up a notch. Nat Cell Biol 2005 Dec; 7(12): 1159–61

    Article  PubMed  Google Scholar 

  29. Brown NG, Fowles C, Sharma R, et al. Mechanistic studies on rhodopsin kinase: light-dependent phosphorylation of C-terminal peptides of rhodopsin. Eur J Biochem 1993 Mar 15; 212(3): 840

    PubMed  CAS  Google Scholar 

  30. Cong M, Perry SJ, Lin FT, et al. Regulation of membrane targeting of the G protein-coupled receptor kinase 2 by protein kinase A and its anchoring protein AKAP79. J Biol Chem 2001 May 4; 276(18): 15192–9

    Article  PubMed  CAS  Google Scholar 

  31. Winstel R, Freund S, Krasel C, et al. Protein kinase cross-talk: membrane targeting of the beta-adrenergic receptor kinase by protein kinase C. Proc Natl Acad Sci U S A 1996 Mar 5; 93(5): 2105–9

    Article  PubMed  CAS  Google Scholar 

  32. Braz JC, Gregory K, Pathak A, et al. PKC-alpha regulates cardiac contractility and propensity toward heart failure. Nat Med 2004 Mar; 10(3): 248–54

    Article  PubMed  CAS  Google Scholar 

  33. Daaka Y, Pitcher JA, Richardson M, et al. Receptor and G betagamma isoform-specific interactions with G protein-coupled receptor kinases. Proc Natl Acad Sci U S A 1997 Mar 18; 94(6): 2180–5

    Article  PubMed  CAS  Google Scholar 

  34. Touhara K, Koch WJ, Hawes BE, et al. Mutational analysis of the pleckstrin homology domain of the beta-adrenergic receptor kinase: differential effects on G beta gamma and phosphatidylinositol 4,5-bisphosphate binding. J Biol Chem 1995 Jul 14; 270(28): 17000–5

    Article  PubMed  CAS  Google Scholar 

  35. DebBurman SK, Ptasienski J, Benovic JL, et al. G protein-coupled receptor kinase GRK2 is a phospholipid-dependent enzyme that can be conditionally activated by G protein betagamma subunits. J Biol Chem 1996 Sep 13; 271(37): 22552–62

    Article  PubMed  CAS  Google Scholar 

  36. Freeman JL, Pitcher JA, Li X, et al. α-Actinin is a potent regulator of G protein-coupled receptor kinase activity and substrate specificity in vitro. FEBS Lett 2000 May 19; 473(3): 280–4

    Article  PubMed  CAS  Google Scholar 

  37. Pitcher JA, Tesmer JJ, Freeman JL, et al. Feedback inhibition of G protein-coupled receptor kinase 2 (GRK2) activity by extracellular signal-regulated kinases. J Biol Chem 1999 Dec 3; 274(49): 34531–4

    Article  PubMed  CAS  Google Scholar 

  38. Elorza A, Sarnago S, Mayor Jr F. Agonist-dependent modulation of G protein-coupled receptor kinase 2 by mitogen-activated protein kinases. Mol Pharmacol 2000 Apr; 57(4): 778–83

    PubMed  CAS  Google Scholar 

  39. Sarnago S, Elorza A, Mayor Jr F. Agonist-dependent phosphorylation of the G protein-coupled receptor kinase 2 (GRK2) by Src tyrosine kinase. J Biol Chem 1999 Nov 26; 274(48): 34411–6

    Article  PubMed  CAS  Google Scholar 

  40. Lorenz K, Lohse MJ, Quitterer U. Protein kinase C switches the Raf kinase inhibitor from Raf-1 to GRK-2. Nature 2003 Dec 4; 426(6966): 574–9

    Article  PubMed  CAS  Google Scholar 

  41. Chuang TT, Paolucci L, De Blasi A. Inhibition of G protein-coupled receptor kinase subtypes by Ca2+/calmodulin. J Biol Chem 1996 Nov 8; 271(45): 28691–6

    Article  PubMed  CAS  Google Scholar 

  42. Chen CK, Inglese J, Lefkowitz RJ, et al. Ca(2+)-dependent interaction of recoverin with rhodopsin kinase. J Biol Chem 1995 Jul 28; 270(30): 18060–6

    Article  PubMed  CAS  Google Scholar 

  43. Iaccarino G, Cipolletta E, Fiorillo A, et al. Beta(2)-adrenergic receptor gene delivery to the endothelium corrects impaired adrenergic vasorelaxation in hypertension. Circulation 2002 Jul 16; 106(3): 349–55

    Article  PubMed  CAS  Google Scholar 

  44. Feldman RD. Defective venous beta-adrenergic response in borderline hypertensive subjects is corrected by a low sodium diet. J Clin Invest 1990 Mar; 85(3): 647–52

    Article  PubMed  CAS  Google Scholar 

  45. Feldman RD, Gros R. Impaired vasodilator function in hypertension: the role of alterations in receptor-G protein coupling. Trends Cardiovasc Med 1998 Oct; 8(7): 297–305

    Article  PubMed  CAS  Google Scholar 

  46. Lembo G, Iaccarino G, Vecchione C, et al. Insulin modulation of an endothelial nitric oxide component present in the alpha2- and beta-adrenergic responses in human forearm. J Clin Invest 1997 Oct 15; 100(8): 2007–14

    Article  PubMed  CAS  Google Scholar 

  47. Gros R, Benovic JL, Tan CM, et al. G-protein-coupled receptor kinase activity is increased in hypertension. J Clin Invest 1997 May 1; 99(9): 2087–93

    Article  PubMed  CAS  Google Scholar 

  48. Gros R, Tan CM, Chorazyczewski J, et al. G-protein-coupled receptor kinase expression in hypertension. Clin Pharmacol Ther 1999 May; 65(5): 545–51

    Article  PubMed  CAS  Google Scholar 

  49. Gros R, Chorazyczewski J, Meek MD, et al. G-protein-coupled receptor kinase activity in hypertension: increased vascular and lymphocyte G-protein receptor kinase-2 protein expression. Hypertension 2000 Jan; 35(1 Pt 1): 38–42

    Article  PubMed  CAS  Google Scholar 

  50. Ishizaka N, Alexander RW, Laursen JB, et al. G protein-coupled receptor kinase 5 in cultured vascular smooth muscle cells and rat aorta: regulation by angiotensin II and hypertension. J Biol Chem 1997 272: 32483–32488

    Article  Google Scholar 

  51. Eckhart AD, Ozaki T, Tevaearai H, et al. Vascular-targeted overexpression of G protein-coupled receptor kinase-2 in transgenic mice attenuates beta-adrenergic receptor signaling and increases resting blood pressure. Mol Pharmacol 2002 Apr; 61(4): 749–58

    Article  PubMed  CAS  Google Scholar 

  52. Keys JR, Zhou RH, Harris DM, et al. Vascular smooth muscle overexpression of G protein-coupled receptor kinase 5 elevates blood pressure, which segregates with sex and is dependent on Gi-mediated signaling. Circulation 2005; 112: 1145–53

    Article  PubMed  CAS  Google Scholar 

  53. Leosco D, Iaccarino G, Cipolletta E, et al. Exercise restores beta-adrenergic vasorelaxation in aged rat carotid arteries. Am J Physiol Heart Circ Physiol 2003 Jul; 285(1): H369–74

    PubMed  CAS  Google Scholar 

  54. Guyton AC, Coleman TG, Young DB, et al. Salt balance and long-term blood pressure control. Annu Rev Med 1980; 31: 15–27

    Article  PubMed  CAS  Google Scholar 

  55. Jose PA, Eisner GM, Felder RA. Renal dopamine receptors in health and hypertension. Pharmacol Ther 1998 Nov; 80(2): 149–82

    Article  PubMed  CAS  Google Scholar 

  56. Felder RA, Sanada H, Xu J, et al. G protein-coupled receptor kinase 4 gene variants in human essential hypertension. Proc Natl Acad Sci U S A 2002 Mar 19; 99(6): 3872–7

    Article  PubMed  CAS  Google Scholar 

  57. Casari G, Barlassina C, Cusi D, et al. Association of the alpha-adducin locus with essential hypertension. Hypertension 1995 Mar; 25(3): 320–6

    Article  PubMed  CAS  Google Scholar 

  58. Speirs HJ, Katyk K, Kumar NN, et al. Association of G-protein-coupled receptor kinase 4 haplotypes, but not HSD3B1 or PTP1B polymorphisms, with essential hypertension. J Hypertens 2004 May; 22(5): 931–6

    Article  PubMed  CAS  Google Scholar 

  59. Liu S, Premont RT, Kontos CD, et al. A crucial role for GRK2 in regulation of endothelial cell nitric oxide synthase function in portal hypertension. Nat Med 2005 Sep; 11(9): 952–8

    Article  PubMed  CAS  Google Scholar 

  60. Koch WJ, Rockman HA, Samama P, et al. Cardiac function in mice overexpressing the p-adrenergic receptor kinase or a pARK inhibitor. Science 1885; 268: 1350–3

    Article  Google Scholar 

  61. Choi DJ, Koch WJ, Hunter JJ, et al. Mechanism of beta-adrenergic receptor desensitization in cardiac hypertrophy is increased beta-adrenergic receptor kinase. J Biol Chem 1997 Jul 4; 272(27): 17223–9

    Article  PubMed  CAS  Google Scholar 

  62. Manning BS, Shotwell K, Mao L, et al. Physiological induction of a β-adrenergic receptor kinase inhibitor transgene preserves β-adrenergic responsiveness in pressure-overload cardiac hypertrophy. Circulation 2000 Nov 28; 102(22): 2751–7

    Article  PubMed  CAS  Google Scholar 

  63. Tachibana H, Naga Prasad SV, Lefkowitz RJ, et al. Level of βARK1 inhibition determines the degree of cardiac dysfunction following chronic pressure overload induced heart failure. Circulation 2005; 111: 591–7

    Article  PubMed  CAS  Google Scholar 

  64. Anderson KM, Eckhart AD, Willette RN, et al. The myocardial β-adrenergic system in spontaneously hypertensive heart failure (SHHF) rats. Hypertension 1999; 33: 402–7

    Article  PubMed  CAS  Google Scholar 

  65. Eckhart AD, Koch WJ. Expression of a beta-adrenergic receptor kinase inhibitor reverses dysfunction in failing cardiomyocytes. Mol Ther 2002 Jan; 5(1): 74–9

    Article  PubMed  CAS  Google Scholar 

  66. Park SJ, Choi DJ, Kim CW. Hypertensive left ventricular hypertrophy: relation to beta-adrenergic receptor kinase-1 (βARK1) in peripheral lymphocytes. J Hypertens 2004 May; 22(5): 1025–32

    Article  PubMed  CAS  Google Scholar 

  67. Iaccarino G, Tomhave ED, Lefkowitz RJ, et al. Reciprocal in vivo regulation of myocardial G protein-coupled receptor kinase expression by beta-adrenergic receptor stimulation and blockade. Circulation 1998 Oct 27; 98(17): 1783–9

    Article  PubMed  CAS  Google Scholar 

  68. Ungerer M, Bohm M, Elce JS, et al. Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. Circulation 1993 Feb; 87(2): 454–63

    Article  PubMed  CAS  Google Scholar 

  69. Hata JA, William ML, Koch WJ. Genetic manipulation of myocardial β-adrenergic receptor activation and desensitization. J Mol Cell Cardiol 2004; 37: 11–21

    Article  PubMed  CAS  Google Scholar 

  70. Brodde OE. Beta-adrenoceptors in cardiac disease. Pharmac Ther 1993; 60: 405–30

    Article  CAS  Google Scholar 

  71. Rundqvist B, Elam M, Bergmann-Sverrisdottir Y, et al. Increased cardiac adrenergic drive precedes generalized sympathetic activation in human heart failure. Circulation 1997 Jan 7; 95(1): 169–75

    Article  PubMed  CAS  Google Scholar 

  72. Iaccarino G, Barbato E, Cipolleta E, et al. Cardiac betaARK1 upregulation induced by chronic salt deprivation in rats. Hypertension 2001 Aug; 38(2): 255–60

    Article  PubMed  CAS  Google Scholar 

  73. Rockman HA, Chien KR, Choi DJ, et al. Expression of a beta-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice. Proc Natl Acad Sci U S A 1998 Jun 9; 95(12): 7000–5

    Article  PubMed  CAS  Google Scholar 

  74. Dorn 2nd GW, Tepe NM, Wu G, et al. Mechanisms of impaired beta-adrenergic receptor signaling in G(αq)-mediated cardiac hypertrophy and ventricular dysfunction. Mol Pharmacol 2000 Feb; 57(2): 278–87

    PubMed  CAS  Google Scholar 

  75. Dzimiri N, Basco C, Moorji A, et al. Characterization of lymphocyte beta 2-adrenoceptor signalling in patients with left ventricular volume overload disease. Clin Exp Pharmacol Physiol 2002 Mar; 29(3): 181–8

    Article  PubMed  CAS  Google Scholar 

  76. Dzimiri N, Muiya P, Andres E, et al. Differential functional expression of human myocardial G protein receptor kinases in left ventricular cardiac diseases. Eur J Pharmacol 2004 Apr 12; 489(3): 167–77

    Article  PubMed  CAS  Google Scholar 

  77. Leineweber K, Rohe P, Beilfuss A, et al. G-protein-coupled receptor kinase activity in human heart failure: effects of beta-adrenoceptor blockade. Cardiovasc Res 2005 Jun 1; 66(3): 512–9

    Article  PubMed  CAS  Google Scholar 

  78. Williams ML, Koch WJ. Viral-based myocardial gene therapy approaches to alter cardiac function. Annu Rev Physiol 2004; 66: 49–75

    Article  PubMed  CAS  Google Scholar 

  79. Iaccarino G, Barbato E, Cipolletta E, et al. Elevated myocardial and lymphocyte GRK2 expression and activity in human heart failure. Eur Heart J 2005 Sep; 26(17): 1752–8

    Article  PubMed  CAS  Google Scholar 

  80. Hata JA, Williams ML, Schroder JN, et al. Lymphocyte levels of GRK2 (βARK1) mirror changes in the LVAD-supported failing human heart: lower GRK2 associated with improved β-adrenergic signaling after mechanical unloading. J Card Fail 2006; 12: 360–8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Guido Iaccarino is supported by MIUR grant 2004069479_002. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter J. Koch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iaccarino, G., Campanile, A., Santulli, G. et al. G Protein-Coupled Receptor Kinases and Hypertension. High Blood Press Cardiovasc Prev 13, 151–158 (2006). https://doi.org/10.2165/00151642-200613040-00002

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00151642-200613040-00002

Keywords

Navigation