Skip to main content
Log in

New Syndromes in Mushroom Poisoning

  • Review Article
  • Published:
Toxicological Reviews

Abstract

Several new mushroom poisoning syndromes have been described since the early 1990s. In these syndromes, the onset of symptoms generally occurs >6 hours after ingestion. Treatment is mainly supportive. The syndrome induced by Amanita smithiana/proxima consists of acute tubulopathy, which appears earlier and does not have the same poor prognosis as the orellanine-induced syndrome. It has been described since 1992 in the US and Canada with A. smithiana; in France, Spain and Italy with A. proximo; and in Japan with A. pseudoporphyria. The responsible toxin is probably 2-amino-4,5-hexadienoic acid. The erythromelalgia syndrome has been described as early as the late 19th century in Japan and South Korea with Clitocybe acromelalga, and since 1996 in France and then Italy with C. amoenolens. Responsible toxins are probably acromelic acids identified in both species. Several cases of massive rhabdomyolysis have been reported since 1993 in France and 2001 in Poland after ingestion of large amounts of an edible and, until then, valuable species called Tricholoma equestre. These cases of rhabdomyolysis are associated with respiratory and cardiac (myocarditis) complications leading to death. Rhabdomyolysis with an apparently different mechanism was described in Taiwan in 2001 with Russula subnigricans. Finally, cases of encephalopathy were observed twice after ingestion of Hapalopilus rutilans in Germany in 1992 and Pleurocybella porrigens in Japan in 2004, where a convulsive encephalopathy outbreak was reported in patients with history of chronic renal failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Table IV
Fig. 1

Similar content being viewed by others

References

  1. Beuhler M, Graeme KA. Overview of mushroom poisoning. In: Breent J, Wallace KL, Burkhart KK, et al., editors. Critical care toxicology: diagnosis and management of the critically poisoned patient. Philadelphia (PA): Elsevier, 2005: 1263–75

    Google Scholar 

  2. Schonwald S. Mushrooms. In: Dart RC, editor. Medical toxicology. 3rd ed. Philadelphia (PA): Lippincott Williams & Wilkins, 2004: 1719–35

    Google Scholar 

  3. Goldfrank LR. Mushrooms. In: Flomenbaum NE, Goldfrank LR, Hoffman RS, et al., editors. Goldfrank’s toxicologic emergencies. 8th ed. New York: McGraw-Hill, 2006: 1115–26

    Google Scholar 

  4. Benjamin DR. Diagnosis and management of mushrooms poisoning: mushrooms poisons and panaceas — a handbook for naturalists, mycologists, and physicians. New York: WH Freeman and Company, 1995: 171–96

    Google Scholar 

  5. Rumack BH. Symptomatic diagnosis and treatment of mushroom poisoning. In: Spoerke DG, Rumack BH, editors. Handbook of mushroom poisoning: diagnosis and treatment. 2nd ed. Boca Rota (FL): CRC Press, 1994: 149–63

    Google Scholar 

  6. Proudfoot A. Features and treatment of specific poisons: mushrooms — diagnosis and management of acute poisoning. Oxford: Blackwell Scientific Publications, 1982: 145–9

    Google Scholar 

  7. Saviuc P, Flesch F, Danel V. Intoxications par les champignons: syndromes majeurs. Paris: Encyclopédie Médico-Chirurgicale — Elsevier, 2003; 16077-A-10: 1–10

    Google Scholar 

  8. Saviuc P, Flesch F, Danel V. Intoxications par les champignons: syndromes mineurs. Paris: Encyclopédie Médico-Chirurgicale — Elsevier, 2006; 16077-B-10: 1–12

    Google Scholar 

  9. Grzymala S. Massenvergiftung durch den orangefuchsigen Hatkopt. Z Pilzkd 1957; 23: 138–44

    Google Scholar 

  10. Danel V, Saviuc P, Garon D. Main features of Cortinarius spp. poisoning: a literature review. Toxicon 2001; 39: 1053–60

    Article  PubMed  CAS  Google Scholar 

  11. Rapior S, Andary C, Privat G. Chemotaxonomic study of orellanine in species of Cortinarius and Dermocybe. Mycologia 1988; 80: 741–7

    Article  Google Scholar 

  12. Tulloss RE, Lindgren JE. Amanita smithiana: taxonomy, distribution and poisonings. Mycotaxon 1992; 45: 373–87

    Google Scholar 

  13. Leathern AM, Purssell RA, Chan VR, et al. Renal failure caused by mushroom poisoning. J Toxicol Clin Toxicol 1997; 35: 67–75

    Article  Google Scholar 

  14. Warden CR, Benjamin DR. Acute renal failure associated with suspected Amanita smithiana mushroom ingestions: a case series. Acad Emerg Med 1998; 5: 808–12

    Article  PubMed  CAS  Google Scholar 

  15. Leray H, Canaud B, Andary C, et al. Intoxication par Amanita proxima; une nouvelle cause d’insuffisance rénale aiguë. Nephrologie 1994; 15: 197–9

    PubMed  CAS  Google Scholar 

  16. Ducros J, Labastie J, Saingra S. Une observation supplémentaire d’intoxication par Amanita proxima à l’origine d’insuffisance rénale aiguë. Nephrologie 1995; 16: 341

    PubMed  CAS  Google Scholar 

  17. De Haro L, Jouglard J, Arditi J, et al. Insuffisance rénale aiguë lors d’intoxications par Amanita proxima: expérience du Centre Anti-poisons de Marseille. Nephrologie 1998; 19: 21–4

    PubMed  Google Scholar 

  18. Saviuc P, Garon D, Danel V, et al. Intoxications par les cortinaires: analyse des cas de la littérature. Nephrologie 2001; 2: 167–73

    Google Scholar 

  19. Seeger R, Kraus H, Wiedmann R. Zum Vorkommen von Hämolysinen in Pilzen der Gattung Amanita. Arch Toxicol 1973; 30: 215–26

    Article  CAS  Google Scholar 

  20. Jouglard J, Murisasco A, Poyen D, et al. Un cas d’intoxication par des champignons avec insuffisance rénale aiguë réversible. Mars Med 1969; 106: 1075–80

    PubMed  CAS  Google Scholar 

  21. Martinez JG, Losada P, Morey A, et al. Fracaso renal agudo secundario a intoxicación por setas. Nefrologia 1999; 19: 560–3

    Google Scholar 

  22. De Giacomo M, Gargano F, Marchione F, et al. Three cases of acute renal failure managed by the antipoison center of the catholic university of Rome during the last two years [abstract]. 24th Congress EAPCCT, 2004 Jun 1–4; Strasbourg. J Toxicol Clin Toxicol 2004; 44: 118

    Google Scholar 

  23. Myler RK, Lee JC, Hopper J. Renal tubular necrosis caused by mushroom poisoning. Ann Intern Med 1964; 114: 196–204

    Article  CAS  Google Scholar 

  24. Moore B, Burton BT, Lindgren J, et al. Cortinarius mushroom poisoning resulting in anuric renal failure [abstract]. Vet Hum Toxicol 1991; 33: 369

    Google Scholar 

  25. Raff E, Halloran PF, Kjellstrand CM. Renal failure after eating ‘magic’ mushrooms. CMAJ 1992; 147: 1339–41

    PubMed  CAS  Google Scholar 

  26. Hatanaka SI. Amino acids from mushrooms. Fortschr Chem Org Naturst 1992; 59: 1–140

    Article  PubMed  CAS  Google Scholar 

  27. Chilton WS, Tsou G, Kirk L, et al. A naturally-occuring allenic amino acid. Tetrahedron Lett 1968; 9: 6283

    Article  Google Scholar 

  28. Chilton WS, Tsou G. A chloroamino acid from Amanita solitaria. Phytochemistry 1972; 11: 2853–7

    Article  CAS  Google Scholar 

  29. Chilton WS, Ott J. Toxic metabolites of Amanita pantherina, A. cothumata, A. muscaria and other Amanita species. Lloydia 1976; 39: 150–7

    PubMed  CAS  Google Scholar 

  30. Chilton WS, Tsou G, de Cato L, et al. The unsaturated norleucines of Amanita solitaria: chemical and pharmacological studies. Lloydia 1973; 36: 169–73

    PubMed  CAS  Google Scholar 

  31. Pelizarri V, Feifel E, Rohrmoser M, et al. Partial purification and characterization of a toxic component of Amanita smithiana. Mycologia 1994; 86: 555–60

    Article  Google Scholar 

  32. Yang WS, Lin CH, Huang JW, et al. Acute renal failure caused by mushroom poisoning. J Formos Med Assoc 2006; 105: 263–7

    Article  PubMed  CAS  Google Scholar 

  33. Hatanaka SI. Identification of 2-amino-4,5-hexadienoic acid from Amanita pseudoporphyria Hongo. Lloydia 1975; 3: 273–4

    Google Scholar 

  34. Hatanaka SI, Kawakani K. Biochemical studies on nitrogen compounds of fungi. XIX: isolation and identification of L-2-amino-4,5-hexadienoic acid from Amanita neovoidea Hongo. Sci Pap Coll Gen Educ Univ Tokyo 1980; 30: 147–50

    CAS  Google Scholar 

  35. Tulloss RE, Hongo T, Bandhary HR. Amanita neoovoidea: taxonomy and distribution. Mycotaxon 1992; 44: 235–42

    Google Scholar 

  36. Iwafuchi Y, Morita T, Kobayashi H, et al. Delayed onset acute renal failure associated with Amanita pseudoporphyria Hongo ingestion. Intern Med 2003; 42: 78–81

    Article  PubMed  Google Scholar 

  37. Yamaura Y, Fukuhara M, Takabatake E, et al. Hepatotoxic action of a poisonous mushroom, Amanita abrupta in mice and its toxic component. Toxicology 1986; 38: 161–73

    Article  PubMed  CAS  Google Scholar 

  38. Saviuc PF, Danel VC, Moreau P-A, et al. Erythromelalgia and mushroom poisoning. J Toxicol Clin Toxicol 2001; 39: 403–7

    Article  PubMed  CAS  Google Scholar 

  39. Moreau PA, Courtecuisse R, Guez D, et al. Analyse taxinomique d’une espèce toxique: Clitocybe amoenolens Malençon. Cryptogam Mycol 2001; 22: 1–23

    Google Scholar 

  40. Nakamura K, Shoyama F, Toyama J, et al. Empoisonnement par le Dokou-sassa-ko (Clitocybe acromelalga). Jpn J Toxicol 1987: 9

    Google Scholar 

  41. Charignon Y, Garcin R. Un nouveau Champignon toxique en France. Bull Féd Mycol Dauphiné-Savoie 1998; 149: 11–4

    Google Scholar 

  42. Contu M, Signorello P, Anastase A. Clitocybe amoenolens Mal. in Abruzzo con osservazioni sulla sua posizione sistematica. AMER Boll 1999; 48: 16–8

    Google Scholar 

  43. Leonardi M, Ciulli G, Pacioni G, et al. Una intossicazione collettiva da Clitocybe amoenolens riconducibile alla sindrome acromelalgica. Micol Veget Medit 2002; 17: 133–42

    Google Scholar 

  44. Saviuc P, DeMatteis M, Mezin P, et al. Toxicity of the Clitocybe amoenolens mushroom in the rat. Vet Hum Toxicol 2003; 45: 180–2

    PubMed  CAS  Google Scholar 

  45. Fukuwatari T, Sugimoto E, Yokoyama K, et al. Establishment of animal model for elucidating the mechanism of intoxication by the poisonous mushroom Clitocybe acromelalga. Shokuhin Eiseigaku Zasshi 2001; 42: 185–9

    Article  PubMed  CAS  Google Scholar 

  46. Necker P, Hellon RF. Noxious thermal input from the rat tail: modulation by descending inhibitory influences. Pain 1978; 4: 231–42

    Article  PubMed  CAS  Google Scholar 

  47. Authier N, Balayssac D, Foucaud M, et al. Evaluation comportementale de la neurotoxicité périphérique du champignon Clitocybe amoenolens [abstract]. Journées de la Société Française de Toxicologie (SFT); 2002 Nov 20–21, Paris

  48. Ichimura T. A new poisonous mushroom. Bot Gaz 1918; 65: 109–10

    Article  Google Scholar 

  49. Konno K, Shirahama H, Matsumoto T. Isolation and structure of acromelic acid A and B. New kainoids of Clitocybe acromelalga. Tetrahedron Lett 1983; 24: 939–42

    Article  CAS  Google Scholar 

  50. Konno K, Hashimoto K, Ohfune Y, et al. Synthesis of acromelic acid A: a toxic principle of Clitocybe acromelalga. Tetrahedron Lett 1986; 27: 607–10

    Article  CAS  Google Scholar 

  51. Takano S, Iwabuchi Y, Ogasawara K. A concise enantioselective synthesis of acromelic acid A. J Am Chem Soc 1987; 109: 5523–4

    Article  CAS  Google Scholar 

  52. Konno K, Hashimoto K, Ohfune Y, et al. Acromelic acids A and B: potent neuroexcitatory amino acids isolated from Clitocybe acromelalga. J Am Chem Soc 1988; 110: 4807–15

    Article  CAS  Google Scholar 

  53. Fushiya S, Sato S, Kanasawa T, et al. Acromelic acid C: a new toxic constituent of Clitocybe acromelalga — an efficient isolation of acromelic acids. Tetrahedron Lett 1990; 31: 3901–4

    Article  CAS  Google Scholar 

  54. Fushiya S, Sato S, Kera Y, et al. Isolation of acromelic acids D and E from Clitocybe acromelalga. Heterocycles 1992; 34: 1277–80

    Article  CAS  Google Scholar 

  55. Yamano K, Shirahama H. The structure of a new dipeptide from the mushroom Clitocybe acromelalga. Z Naturforsch [C] 1994; 49: 157–62

    CAS  Google Scholar 

  56. Hirayama F, Konno K, Shirahama H, et al. 4-aminopyridine-2,3-dicarboxylic acid from Clitocybe acromelalga. Phytochemistry 1989; 28: 1133–5

    Article  CAS  Google Scholar 

  57. Yamano K, Shirahama H. New amino acids from Clitocybe acromelalga: possible intermediates in the biogenesis of mushroom toxins, acromelic acids. Tetrahedron 1993; 49: 2427–36

    Article  CAS  Google Scholar 

  58. Yamano K, Shirahama H. New amino acids from the poisonous mushroom Clitocybe acromelalga. Tetrahedron 1992; 48: 1457–64

    Article  CAS  Google Scholar 

  59. Konno K, Shirahama H, Matsumoto T. Clithioneine, an amino acid betaine from Clitocybe acromelalga. Phytochemistry 1984; 23: 1003–6

    Article  CAS  Google Scholar 

  60. Konno K, Hayano K, Shirahama H, et al. Clitidine, a new toxic pyridine nucleoside from Clitocybe acromelalga. Tetrahedron 1982; 38: 3281–4

    Article  CAS  Google Scholar 

  61. Yamano K, Shirahama H. Clitidine 5′-mononucleotide, a toxic pyridine nucleotide from Clitocybe acromelalga. Phytochemistry 1994; 35: 897–9

    Article  CAS  Google Scholar 

  62. Fushiya S, Sato S, Kusano G, et al. Beta-cyano-L-alanine and N-(gamma-L-glutamyl)-beta-cyano-L-alanine, neurotoxic constituents of Clitocybe acromelalga. Phytochemistry 1993; 33: 53–5

    Article  CAS  Google Scholar 

  63. Fushiya S, Matsuda M, Yamada S, et al. New opine type amino acids from a poisonous mushroom, Clitocybe acromelalga. Tetrahedron 1996; 52: 877–86

    Article  CAS  Google Scholar 

  64. Yamano K, Shirahama H. A piperidine amino acid, 2,4,5-piperidinetricarboxylic acid from Clitocybe acromelalga. Z Naturforsch [C] 1994; 49: 707–11

    CAS  Google Scholar 

  65. Fushiya S, Sato S, Nozoe S. L-stizolobic acid and L-stizolobinic acid from Clitocybe acromelalga, precursors of acromelic acids. Phytochemistry 1992; 31: 2337–9

    Article  CAS  Google Scholar 

  66. Bessard J, Saviuc P, Chane-Yene Y, et al. Mass spectrometric determination of acromelic acid A from a new poisonous mushroom: Clitocybe amoenolens. J Chromatogr A 2004; 1055: 99–107

    Article  PubMed  CAS  Google Scholar 

  67. Bessard J, Saviuc P, Moreau P-A, et al. Acide acromélique A: screening de champignons proches de Clitocybe amoenolens [abstract]. Congrès de la Société Française de Toxicologie Analytique, Dinard, 2003 Jun 11–13. Ann Toxicol Analyt 2003; 15(3): 162–3

    Google Scholar 

  68. Chilton WS, Hsu CP, Zdybak WT. Stizolobic and stizolobinic acids in Amanita pantherina. Phytochemistry 1974; 13: 1179–81

    Article  CAS  Google Scholar 

  69. Wright JLC, Boyd RK, Defrietas ASW, et al. Identification of domoic acid, a neuroexcitatory amino acid, in toxic mussels from eastern Prince Edward Island. Can J Chem 1989; 67: 481–90

    Article  CAS  Google Scholar 

  70. Kwak S, Aizawa H, Ishida M, et al. Acromelic acid, a novel kainate analogue, induces long-lasting paraparesis with selective degeneration of interneurons in the rat spinal cord. Exp Neurol 1992; 116: 145–55

    Article  Google Scholar 

  71. Shinozaki H, Ishida M, Gotoh Y, et al. Specific lesions of rat spinal interneurons induced by systemic administration of acromelic acid, a new potent kainate analogue. Brain Res 1989; 503: 330–3

    Article  PubMed  CAS  Google Scholar 

  72. Minami T, Matsumura S, Nishizawa M, et al. Acute and late effects on induction of allodynia by acromelic acid, a mushroom poison related structurally to kainic acid. Br J Pharmacol 2004; 142: 679–88

    Article  PubMed  CAS  Google Scholar 

  73. Kwak S, Nakamura R. Selective degeneration of inhibitory interneurons in the rat spinal cord induced by intrathecal infusion of acromelic acid. Brain Res 1995; 702: 61–71

    Article  PubMed  CAS  Google Scholar 

  74. Tsuji K, Nakamura Y, Ogata T, et al. Neurotoxicity of acromelic acid in cultured neurons from rat spinal cord. Neuroscience 1995; 68: 585–91

    Article  PubMed  CAS  Google Scholar 

  75. Dingledine R, Borges K, Bowie D, et al. The glutamate receptor ion channels. Pharmacol Rev 1999; 51: 7–57

    PubMed  CAS  Google Scholar 

  76. Fundytus ME. Glutamate receptors and nociception: implications for drug treatments of pain. CNS Drugs 2001; 15: 29–58

    Article  PubMed  CAS  Google Scholar 

  77. Kalamees K. Taxonomy and ecology of the species of the Tricholoma equestre group in the Nordic and Baltic countries. Folia Cryptogam Est 2001; 38: 13–23

    Google Scholar 

  78. Bédry R, Pillet O, Sentilhes A, et al. Lethal rhabdomyolysis contemporaneous with a Cortinarius intoxication [abstract]. European Association of Poison Centres and Clinical Toxicologists (EAPCCT), Scientific Meeting; 1993 May 26–28; Birmingham

  79. Gérault A. Intoxication collective de type orellanien provoquée par Cortinarius splendens R. Hy. Bull Soc Mycol France 1981; 97: 67–72

    Google Scholar 

  80. Schliessbach B, Hasler S, Friedli HP, et al. Akute Niereninsuffizienz nach Pilzvergiftung mit Cortinarius splendens (Fries) oder (schöngelbem Klumpfuss) (sog. Orellanus Syndrom). Schweiz Med Wochenschr 1983; 113: 151–3

    PubMed  CAS  Google Scholar 

  81. Bédry R, Baudrimont I, Deffieux G, et al. Wild-mushroom intoxication as a cause of rhabdomyolysis. N Engl J Med 2001; 345: 798–802

    Article  PubMed  Google Scholar 

  82. Chodorowski Z, Waldman W, Scin Anand J. Acute poisoning with Tricholoma equestre. Przegl Lek 2002; 59: 386–7

    PubMed  Google Scholar 

  83. Chodorowski Z, Anand JS, Grass M. Acute poisoning with Tricholoma equestre of five-year old child. Przegl Lek 2003; 60: 309–10

    PubMed  Google Scholar 

  84. Nieminen P, Mustonen A-M, Kirsi M. Increased plasma creatine kinase activities triggered by edible wild mushrooms. Food Chem Toxicol 2005; 43: 133–8

    Article  PubMed  CAS  Google Scholar 

  85. Chodorowski Z, Scin Anand J, Madalinski M, et al. Enzymatic examination of potential interaction between statins or fibrates and consumed Tricholoma equestre. Przegl Lek 2005; 62: 468–70

    PubMed  Google Scholar 

  86. Nieminem P, Kirsi M, Mustonen A-M. Suspected myotoxicity of edible wild mushrooms. Exp Biol Med 2006; 231: 221–8

    Google Scholar 

  87. Lee PT, Wu ML, Tsai WJ, et al. Rhabdomyolysis: an unusual feature with mushroom poisoning. Am J Kidney Dis 2001; 38: E17

    Article  PubMed  CAS  Google Scholar 

  88. Kusano G, Ogawa H, Takahashi A, et al. A new aminoacid from Russula subnigricans. Chem Pharm Bull 1987; 35: 3482–6

    Article  CAS  Google Scholar 

  89. Takahashi A, Agatsuma T, Matsuda M, et al. Russuphelin A: a new cytotoxic substance from the mushroom Russula subnigricans Hongo. Chem Pharm Bull 1992; 40: 3185–8

    Article  PubMed  CAS  Google Scholar 

  90. Takahashi A, Agatsuma T, Ohta T, et al. Russophelins B, C, D, E and F: new cytotoxic substances from the mushroom Russula subnigricans Hongo. Chem Pharm Bull 1993; 41: 1726–9

    Article  PubMed  CAS  Google Scholar 

  91. Ohta T, Takahashi A, Matsuda M, et al. Russuphelol, a novel optically active chlorohydroquinone tetramer from the mushroom Russula subnigricans. Tetrahedron Lett 1995; 36: 5223–6

    CAS  Google Scholar 

  92. Herrmann M, Herrmann W, Langner J, et al. Der Zimtfarbene Weichporling — Hapalopilus rutilans — verursachte zwei Vergiftungsgeschehen. Mykol Mitt 1989; 32: 1–4

    Google Scholar 

  93. Kraft J, Bauer S, Keilhoff G. Biological effects of the dihydroorotate dehydrogenase inhibitor polyporic acid, a toxic constituent of the mushroom Hapalopilus rutilans, in rats. Arch Toxicol 1998; 72: 711–21

    Article  PubMed  CAS  Google Scholar 

  94. Heim R. Considérations sur le genre Phaelus Pat. L’acide polyporique du Phaeolus nidulans (Pers.) Pat. Ann Cryptog Exotique 1931; 4: 183–5

    Google Scholar 

  95. Cohen PA, Robinson PD. 2,5-diphenyl-3,6-dihydroxy-1,4-benzoquinone (polyporic acid). Acta Crystallogr 2001; E57: o596–8

    CAS  Google Scholar 

  96. Burton JF, Cain BF. Antileukemic activity of polyporic acid. Nature 1959; 194: 1326–7

    Article  Google Scholar 

  97. Akiyama H, Toida T, Sakai S, et al. Determination of cyanide and thiocyanate in Sugihiratake mushroom using HPLC method with fluorometric detection. J Health Sci 2006; 52: 73–7

    Article  CAS  Google Scholar 

  98. Asia-Pacific Economic Cooperation — Emerging Infections Network (APEC-EINet). Japan: Acute neurological disorders in Niigata. APEC-EINet Newsletter, 2004 Nov 12, 7 (24) [online]. Available from URL: http://depts.washington.edu/apecein/newsbriefs/2004/0011nb23.doc [Accessed 2006 Jul 10]

    Google Scholar 

  99. Gonmori K. A study on hydrogen cyanide in edible mushrooms, Pleurocybella porrigens and Grifola frondosa [abstract BE02]. 43rd International Meeting of the International Association of Forensic Toxicologists — East Meets West in Forensic Toxicology; 2005 Aug 29–Sep 2; Seoul, 214

  100. Murata A. Acute encephalopathy outbreak in the northwest part of Japan: present situation. Japan Poison Information Center, National Institute of Infectious Diseases. Situation on Nov 8, 2004 [online]. Available from URL: http://www.j-poison-ic.or.jp/sanjyo/ReportE.pdf and html version [Accessed 2006 Jul 10]

  101. Kato T, Kawanami T, Shimizu H, et al. An outbreak of encephalopathy after eating autumn mushroom (Sugihiratake; Pleurocybella porrigens) in patients with renal failure: a clinical analysis of ten cases in Yamagata, Japan. No To Shinkei 2004; 56(12): 999–1007

    PubMed  Google Scholar 

  102. Gejyo F, Homma N, Higuchi N, et al. A novel type of encephalopathy associated with mushroom Sugihiratake ingestion in patients with chronic kidney diseases. Kidney Int 2005; 68: 188–92

    Article  PubMed  Google Scholar 

  103. Kurokawa K, Sato H, Nakajima K, et al. Clinical, neuroimaging and electroencephalographic findings of encephalopathy occurring after the ingestion of ‘sugihiratake’ (Pleurocybella porrigens), an autumn mushroom: a report of two cases. Rinsho Shinkeigaku 2005; 45: 111–6

    PubMed  Google Scholar 

  104. Kuwabara T, Arai A, Honma N, et al. Acute encephalopathy among patients with renal dysfunction after ingestion of ‘sugihiratake’, angel’s wing mushroom: study on the incipient cases in the northern area of Niigata Prefecture. Rinsho Shinkeigaku 2005; 5: 39–45

    Google Scholar 

  105. Nishizawa M. Acute encephalopathy after ingestion of ‘sugihiratake’ mushroom. Rinsho Shinkeigaku 2005; 45: 818–20

    PubMed  Google Scholar 

  106. Obara K, Okawa S, Kobayashi M, et al. A case of encephalitis-type encephalopathy related to Pleurocybella porrigens (Sugihiratake). Rinsho Shinkeigaku 2005; 45: 253–6

    PubMed  Google Scholar 

  107. Aoyagi Y, Sugahara T. Beta-hydroxy-L-valine from Pleurocybella porrigens. Phytochemistry 1988; 27: 3306–7

    Article  CAS  Google Scholar 

  108. Furukawa K, Ying R, Nakajima T, et al. Hemagglutinins in fungus extracts and their blood group specificity. Exp Clin Immunogenet 1995; 12: 223–31

    PubMed  CAS  Google Scholar 

  109. Hasuike Y, Nakanishi T, Moriguchi R, et al. Accumulation of cyanide and thiocyanate in haemodialysis patients. Nephrol Dial Transplant 2004; 19: 1474–9

    Article  PubMed  CAS  Google Scholar 

  110. Stijve T, Meijer AAR. Hydrocyanic acid in mushrooms, with special reference to wild-growing and cultivated species. Dtsch Lebensmitt Rundsch 1999; 95: 366–73

    CAS  Google Scholar 

  111. Matsumoto T, Nagasawa E, Fukumasa-Nakai Y. Variation of ITS sequences in a natural Japanese population of Pleurocybella porrigens. Mycoscience 2005; 46: 370–5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Valérie Arrigo for her help. No sources of external funding were used to assist in the preparation of this review. The authors are not aware of any potential conflicts of interest directly relevant to the contents of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Saviuc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saviuc, P., Danel, V. New Syndromes in Mushroom Poisoning. Toxicol Rev 25, 199–209 (2006). https://doi.org/10.2165/00139709-200625030-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00139709-200625030-00004

Keywords

Navigation