Skip to main content
Log in

Role of P-Glycoprotein and Organic Anion Transporting Polypeptides in Drug Absorption and Distribution

Focus on H1-Receptor Antagonists

  • Review Article
  • Published:
Clinical Drug Investigation Aims and scope Submit manuscript

Abstract

Traditionally, drug-induced changes in cytochrome P450 isoenzyme activity, causing changes in drug metabolism and bioavailability, have been the main focus of drug interaction studies. Recent research, however, suggests that the drug transporters P-glycoprotein and organic anion transporting peptide (OATP), which can effect the efflux and influx of many classes of drugs, may contribute to drug interactions by mechanisms independent of oxidative metabolism. Experimental models designed to selectively probe the function of P-glycoprotein or OATP have demonstrated that changes in the activities of these transporters may have a significant effect on the bioavailability of clinically important drugs, leading to the potential for adverse drug interactions.

This review focuses on what is known about the P-glycoprotein and OATP drug transporters and their effects on drug bioavailability. Where possible, it uses as examples the second-generation Hi-receptor antagonists, where concomitant administration of other drugs or food constituents has been shown to alter the bioavailability of some agents of this class via mechanisms probably mediated by P-glycoprotein and/or OATP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Table II
Table III
Table IV

Similar content being viewed by others

References

  1. Schoenwetter WF. Allergic rhinitis: Epidemiology and natural history. Allergy Asthma Proc 2000; 21: 1–6

    Article  PubMed  CAS  Google Scholar 

  2. Honig PK, Woosley RL, Zamani K, et al. Changes in the pharmacokinetics and electrocardiographic pharmacodynamics of terfenadine with concomitant administration of erythromycin. Clin Pharmacol Ther 1992; 52: 231–8

    Article  PubMed  CAS  Google Scholar 

  3. Monahan BP, Ferguson CL, Killeavy ES, et al. Torsades de pointes occurring in association with terfenadine use. JAMA 1990; 264: 2788–90

    Article  PubMed  CAS  Google Scholar 

  4. Michalets EL. Update: clinically significant cytochrome P-450 drug interactions. Pharmacotherapy 1998; 18: 84–112

    PubMed  CAS  Google Scholar 

  5. Markham A, Wagstaff AJ. Fexofenadine. Drugs 1998; 55: 269–74

    Article  PubMed  CAS  Google Scholar 

  6. Banfield C, Cayen M, Gupta S, et al. Grapefruit juice has no effect on the bioavailability of desloratadine, but reduces the Cmax and AUC of fexofenadine by 30% [abstract]. Ann Allergy Asthma Immunol 2001; 86: 108

    Google Scholar 

  7. Tanigawara Y. Role of P-glycoprotein in drug disposition. Ther Drug Monit 2000; 22: 137–40

    Article  PubMed  CAS  Google Scholar 

  8. Kullak-Ublick GA, Ismair MG, Stieger B, et al. Organic aniontransporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterol 2001; 120: 525–33

    Article  CAS  Google Scholar 

  9. Kullak-Ublick GA, Hagenbuch B, Stieger B, et al. Functional characterization of the basolateral rat liver organic anion transporting polypeptide. Hepatology 1994; 20: 411–6

    PubMed  CAS  Google Scholar 

  10. Kim RB, Wandel C, Leake B, et al. Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm Res 1999; 16: 408–14

    Article  PubMed  CAS  Google Scholar 

  11. Silverman JA. P-glycoprotein. Metabolic drug interactions. Philadelphia: Lippincott Williams & Wilkins, 2000: 135–44

    Google Scholar 

  12. Fromm MF. P-glycoprotein: a defense mechanism limiting oral bioavailability and CNS accumulation of drugs. Int J Clin Phannacol Ther 2000; 38: 69–74

    CAS  Google Scholar 

  13. Ueda K, Pastan I, Gottesman MM. Isolation and sequence of the promoter region of the human multidrug-resistance (P-glycoprotein) gene. J Biol Chem 1987; 262: 17432–6

    PubMed  CAS  Google Scholar 

  14. Thiebaut F, Tsuruo T, Hamada H, et al. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci USA 1987; 84: 7735–8

    Article  PubMed  CAS  Google Scholar 

  15. Schinkel AH, Wagenaar E, Mol CA, et al. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 1996; 97: 2517–4

    Article  PubMed  CAS  Google Scholar 

  16. Dresser GK, Scharwz U, Leake B, et al. Grapefruit juice selectively inhibits OATP not P-glycoprotein [abstract]. Drug Metab Rev 2000; 32Suppl. 2: 193

    Google Scholar 

  17. Mayer U, Wagenaar E, Dorobek B, et al. Full blockade of intestinal P-glycoprotein and extensive inhibition of blood-brain barrier P-glycoprotein by oral treatment of mice with PSC833. J Clin Invest 1997; 100: 2430–6

    Article  PubMed  CAS  Google Scholar 

  18. Golden PL, Pardridge WM. Brain microvascular P-glycoprotein and a revised model of multidrug resistance in brain. Cell Mol Neurobiol 2000; 20: 165–81

    Article  PubMed  CAS  Google Scholar 

  19. Borst P, Zelcer N, van Helvoort A. ABC transporters in lipid transport. Biochim Biophys Acta 2000; 1486: 128–44

    Article  PubMed  CAS  Google Scholar 

  20. Sawamoto T, Van Gelder T, Christians U, et al. Membrane transport of mycophenolate mofetil and its active metabolite, mycophenolic acid in MDCK and MDR1-MDCK cell monolayers [abstract]. J Heart Lung Transplant 2001; 20: 234–5

    Article  PubMed  Google Scholar 

  21. Cvetkovic M, Leake B, Fromm MF, et al. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos 1999; 27: 866–71

    PubMed  CAS  Google Scholar 

  22. Ishikawa M, Fujita R, Takayanagi M, et al. Reversal of acquired resistance to doxorubicin in K562 human leukemia cells by astemizole. Biol Pharm Bull 2000; 23: 112–5

    Article  PubMed  CAS  Google Scholar 

  23. Wang EJ, Casciano CN, Clement RP, et al. Evaluation of the interaction of loratadine and desloratadine with P-glycoprotein. Drug Metab Dispos 2001; 29: 1080–3

    PubMed  CAS  Google Scholar 

  24. Kim RB, Fromm MF, Wandel C, et al. The drug transporter P-glycoprotein limits oral absorption and brain entry of HTV-1 protease inhibitors. J Clin Invest 1998; 101: 289–94

    Article  PubMed  CAS  Google Scholar 

  25. Lee CG, Gottesman MM, Cardarelli CO, et al. HIV-1 protease inhibitors are substrates for the MDR1 multidrug transporter. Biochemistry 1998; 37: 3594–601

    Article  PubMed  CAS  Google Scholar 

  26. Alsenz J, Steffen H, Alex R. Active apical secretory efflux of the HIV protease inhibitors saquinavir and ritonavir in Caco-2 cell monolayers [published erratum appears in Pharm Res 1998 Jun; 15 (6): 958]. Pharm Res 1998; 15: 423–8

    Article  PubMed  CAS  Google Scholar 

  27. Sparreboom A, van Asperen J, Mayer U, et al. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc Natl Acad Sci USA 1997; 94: 2031–5

    Article  PubMed  CAS  Google Scholar 

  28. Mayer U, Wagenaar E, Beijnen JH, et al. Substantial excretion of digoxin via the intestinal mucosa and prevention of long-term digoxin accumulation in the brain by the mdr 1a P-glycoprotein. Br J Phannacol 1996; 119: 1038–44

    Article  CAS  Google Scholar 

  29. Lown KS, Mayo RR, Leichtman AB, et al. Role of intestinal P-glycoprotein (mdrl) in interpatient variation in the oral bioavailability of cyclosporine. Clin Phannacol Ther 1997; 62: 248–60

    Article  CAS  Google Scholar 

  30. Greiner B, Eichelbaum M, Fritz P, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest 1999; 104: 147–53

    Article  PubMed  CAS  Google Scholar 

  31. Schwarz UI, Gramatte T, Krappweis J, et al. P-glycoprotein inhibitor erythromycin increases oral bioavailability of talinolol in humans. Int J Clin Pharmacol Ther 2000; 38: 161–7

    PubMed  CAS  Google Scholar 

  32. Schuetz EG, Beck WT, Schuetz JD. Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. Mol Pharmacol 1996; 49: 311–8

    PubMed  CAS  Google Scholar 

  33. Johne A, Brockmoller J, Bauer S, et al. Pharmacokinetic interaction of digoxin with an herbal extract from St John’s wort (Hypericum perfonitum). Clin Pharmacol Ther 1999; 66: 338–45

    Article  PubMed  CAS  Google Scholar 

  34. Dresser GK, Schwarz UI, Wilkinson GR, et al. St. John’s wort induces intestinal and hepatic CYP3A4 and P-glycoprotein in healthy volunteers [abstract]. Clin Pharmacol Ther 2001; 69:23

    Google Scholar 

  35. Harnman MA, Wang Z, Honig P, et al. Effects of acute and chronic Saint John’s wort (SJW) administration of fexofenadine (FEX) disposition [abstract]. Clin Pharmacol Ther 2001; 69: 53

    Google Scholar 

  36. Jacquemin E, Hagenbuch B, Stieger B, et al. Expression cloning of a rat liver Na(+)-independent organic anion transporter. Proc Natl Acad Sci USA 1994; 91: 133–7

    Article  PubMed  CAS  Google Scholar 

  37. Noe B, Hagenbuch B, Stieger B, et al. Isolation of a multi-specific organic anion and cardiac glycoside transporter from rat brain. Proc Natl Acad Sci USA 1997; 94: 10346–50

    Article  PubMed  CAS  Google Scholar 

  38. Ishizuka H, Konno K, Naganuma H, et al. Transport of temo-caprilat into rat hepatocytes: role of organic anion transporting polypeptide. J Pharmacol Exp Ther 1998; 287: 37–42

    PubMed  CAS  Google Scholar 

  39. Pang KS, Wang PJ, Chung AY, et al. The modified dipeptide, enalapril, an angiotensin-converting enzyme inhibitor, is transported by the rat liver organic anion transport protein. Hepatology 1998; 28: 1341–6

    Article  PubMed  CAS  Google Scholar 

  40. Shi X, Bai S, Ford AC, et al. Stable inducible expression of a functional rat liver organic anion transport protein in HeLa cells. J Biol Chem 1995; 270: 25591–5

    Article  PubMed  CAS  Google Scholar 

  41. Kullak-Ublick GA, Hagenbuch B, Stieger B, et al. Molecular and functional characterization of an organic anion transporting polypeptide cloned from human liver. Gastroenterol 1995; 109: 1274–82

    Article  CAS  Google Scholar 

  42. Bergwerk AJ, Shi X, Ford AC, et al. Immunologie distribution of an organic anion transport protein in rat liver and kidney. Am J Physiol 1996; 271: G231–8

    PubMed  CAS  Google Scholar 

  43. Angeletti RH, Novikoff PM, Juvvadi SR, et al. The choroid plexus epithelium is the site of the organic anion transport protein in the brain. Proc Natl Acad Sci USA 1997; 94: 283–6

    Article  PubMed  CAS  Google Scholar 

  44. Eckhardt U, Horz JA, Petzinger E, et al. The peptide-based thrombin inhibitor CRC 220 is a new substrate of the basolateral rat liver organic anion-transporting polypeptide. Hepatology 1996; 24: 380–4

    Article  PubMed  CAS  Google Scholar 

  45. Bossuyt X, Muller M, Hagenbuch B, et al. Polyspecific drug and steroid clearance by an organic anion transporter of mammalian liver. J Pharmacol Exp Ther 1996; 276: 891–6

    PubMed  CAS  Google Scholar 

  46. Kanai N, Lu R, Bao Y, et al. Estradiol 17-beta-D-glucuronide is a high-affinity substrate for oatp organic anion transporter. Am J Physiol 1996; 270: F326–31

    PubMed  CAS  Google Scholar 

  47. Satlin LM, Amin V, Wolkoff AW. Organic anion transporting polypeptide mediates organic anion/HCO3 exchange. J Biol Chem 1997; 272: 26340–5

    Article  PubMed  CAS  Google Scholar 

  48. Reichel C, Gao B, Van Montfoort J, et al. Localization and function of the organic anion-transporting polypeptide Oatp2 in rat liver. Gastroenterol 1999; 117: 688–95

    Article  CAS  Google Scholar 

  49. Tokui T, Nakai D, Nakagomi R, et al. Pravastatin, an HMG-CoA reductase inhibitor, is transported by rat organic anion transporting polypeptide, oatp2. Pharm Res 1999; 16: 904–8

    Article  PubMed  CAS  Google Scholar 

  50. Kakyo M, Sakagami H, Nishio T, et al. Immunohistochemical distribution and functional characterization of an organic anion transporting polypeptide 2 (oatp2). FEBS Lett 1999; 445: 343–6

    Article  PubMed  CAS  Google Scholar 

  51. Dresser GK, Schwarz UI, Leake B, et al. Citrus juices are potent inhibitors of intestinal OATP but not P-glycoprotein [abstract]. Clin Pharmacol Ther 2001; 69: 23

    Google Scholar 

  52. Bailey DG, Dresser GK, Munoz C, et al. Reduction of fexofenadine bioavailability by fruit juices [abstract]. Clin Pharmacol Ther 2001; 69: 21

    Google Scholar 

  53. Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet 2000; 38: 41–57

    Article  PubMed  CAS  Google Scholar 

  54. Kim AE, Dintaman JM, Waddell DS, et al. Saquinavir, an HIV protease inhibitor, is transported by P-glycoprotein. J Pharmacol Exp Ther 1998; 286: 1439–45

    PubMed  CAS  Google Scholar 

  55. Hofsli E, Nissen-Meyer J. Effect of erythromycin and tumour necrosis factor on the drug resistance of multidrug-resistant cells: reversal of drug resistance by erythromycin. Int J Cancer 1989; 43: 520–5

    Article  PubMed  CAS  Google Scholar 

  56. Barbey JT, Anderson M, Ciprandi G, et al. Cardiovascular safety of second-generation antihistamines. Am J Rhinol 1999; 13: 235–43

    Article  PubMed  CAS  Google Scholar 

  57. Kreutner W, Hey JA, Anthes J, et al. Preclinical pharmacology of desloratadine, a selective and nonsedating histamine H1 receptor antagonist. 1st communication: receptor selectivity, antihistaminic activity, and antiallergenic effects. Arzneimittelforschung 2000; 50: 345–52

    PubMed  CAS  Google Scholar 

  58. Kreutner W, Hey JA, Chiu P, et al. Preclinical pharmacology of desloratadine, a selective and nonsedating histamine H1 receptor antagonist: 2nd communication: Lack of central nervous system and cardiovascular effects. Arzneimittelforschung 2000; 50: 441–8

    PubMed  CAS  Google Scholar 

  59. Glue P, Banfield C, Affrime MB, et al. Lack of electrocardiographic interaction between desloratadine and erythromycin [abstract]. Allergy 2000; 55(Suppl. 63): 276

    Google Scholar 

  60. Affrime MB, Banfield C, Glue P, et al. Lack of electrocardiographic effects when desloratadine and ketoconazole are coadministered [abstract]. Allergy 2000; 55Suppl. 63: 277

    Google Scholar 

Download references

Acknowledgements

This publication was funded, in part, by an educational grant from the Schering-Plough Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip D. Hansten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansten, P.D., Levy, R.H. Role of P-Glycoprotein and Organic Anion Transporting Polypeptides in Drug Absorption and Distribution. Clin. Drug Investig. 21, 587–596 (2001). https://doi.org/10.2165/00044011-200121080-00008

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00044011-200121080-00008

Keywords

Navigation