Skip to main content
Log in

Automated Metabolic Gas Analysis Systems

A Review

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

The use of automated metabolic gas analysis systems or metabolic measurement carts (MMC) in exercise studies is common throughout the industrialised world. They have become essential tools for diagnosing many hospital patients, especially those with cardiorespiratory disease. Moreover, the measurement of maximal oxygen uptake (.VO2max) is routine for many athletes in fitness laboratories and has become a de facto standard in spite of its limitations. The development of metabolic carts has also facilitated the noninvasive determination of the lactate threshold and cardiac output, respiratory gas exchange kinetics, as well as studies of outdoor activities via small portable systems that often use telemetry. Although the fundamental principles behind the measurement of oxygen uptake (.VO2) and carbon dioxide production (.VCO2) have not changed, the techniques used have, and indeed, some have almost turned through a full circle.

Early scientists often employed a manual Douglas bag method together with separate chemical analyses, but the need for faster and more efficient techniques fuelled the development of semi- and full-automated systems by private and commercial institutions. Yet, recently some scientists are returning back to the traditional Douglas bag or Tissot-spirometer methods, or are using less complex automated systems to not only save capital costs, but also to have greater control over the measurement process. Over the last 40 years, a considerable number of automated systems have been developed, with over a dozen commercial manufacturers producing in excess of 20 different automated systems. The validity and reliability of all these different systems is not well known, with relatively few independent studies having been published in this area.

For comparative studies to be possible and to facilitate greater consistency of measurements in test-retest or longitudinal studies of individuals, further knowledge about the performance characteristics of these systems is needed. Such information, along with the costs and the common features associated with these systems, may aid physicians and scientists to select a system that is best suited to their requirements and may also improve the quality of these frequently reported physiological measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III

Similar content being viewed by others

References

  1. Douglas CG. A method for determining the total respiratory exchange in man. J Physiol 1911; 42: 1–2P

    Google Scholar 

  2. Cunningham DJC. Claude Gordon Douglas. Biog Mems Fell R Soc 1964; 10: 51–74

    Article  Google Scholar 

  3. Jones NL. Clinical exercise testing. 3rd ed. Philadelphia (PA): W.B. Saunders, 1988

    Google Scholar 

  4. Withers RT, Gore CJ, Gass G, et al. Determination of maximal oxygen consumption (V̇O2max) or maximal aerobic power. In: Gore CJ, editor. Physiological testing for elite athletes (Australian Sports Commission). Champaign (IL): Human Kinetics, 2000: 114–27

    Google Scholar 

  5. Morton AR, Elms N, Paterson D, et al. Technical notes series no. 2: Calibration of an automated gas analysis system. Canberra: National Sports Research Centre, Australian Sports Commission, 1991: 1–8

    Google Scholar 

  6. Consolazio CF, Johnson RE, Pecora LJ. Physiological measurements of metabolic functions in man. New York (NY): McGraw-Hill, 1963

    Google Scholar 

  7. Lloyd BB. A development of Haldane’s gas-analysis apparatus [abstract]. J Physiol 1958; 143: 5P

    Google Scholar 

  8. Scholander P. Analyser for accurate estimation of respiratory gases in one half cubic centimeter samples. J Biol Chem 1947; 167: 235–50

    PubMed  CAS  Google Scholar 

  9. Shephard RJ. A critical examination of the Douglas bag technique. J Physiol 1955; 127: 515–24

    PubMed  CAS  Google Scholar 

  10. Rahaman MM, Durnin JVGA. Changes in concentration of gases in the rubber bladders of Max-Planck respirometers. J Appl Physiol 1964; 19 (6): 1188–91

    PubMed  CAS  Google Scholar 

  11. Cureton TK. Interpretation of the oxygen uptake test. What is it. Am Corr Ther J 1973; 21 (1): 17–23

    Google Scholar 

  12. Shephard RJ. Tests of maximum oxygen intake: a critical review. Sports Med 1984; 1 (2): 99–124

    Article  PubMed  CAS  Google Scholar 

  13. Noakes TD. Maximal oxygen uptake: ‘classical’ versus ‘contemporary’ viewpoints: a rebuttal. Med Sci Sports Exerc 1998; 30 (9): 1381–98

    PubMed  CAS  Google Scholar 

  14. Bassett DR, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc 2000; 32 (1): 70–84

    PubMed  Google Scholar 

  15. Noakes TD. Implications of exercise testing for prediction of athletic performance: a contemporary perspective. Med Sci Sports Exerc 1988; 20 (4): 319–30

    Article  PubMed  CAS  Google Scholar 

  16. Smith JC, Dangelmaier BS, Hill DW. Critical power is related to cycling time trial performance. Int J Sports Med 1999; 20 (6): 374–8

    Article  PubMed  CAS  Google Scholar 

  17. Londeree BR. The use of laboratory test results with long distance runners. Sports Med 1986; 3 (3): 201–13

    Article  PubMed  CAS  Google Scholar 

  18. Beaver WL, Wasserman K, Whipp BJ. Improved detection of lactate threshold during exercise using a log-log transformation. J Appl Physiol 1985; 59 (6): 1936–40

    PubMed  CAS  Google Scholar 

  19. Vanhees L, Defoor J, Schepers D, et al. Comparison of cardiac output measured by two automated methods of CO2 rebreathing. Med Sci Sports Exerc 2000; 32 (5): 1028–34

    PubMed  CAS  Google Scholar 

  20. Whipp BJ, Ward SA. Physiological determinants of pulmonary gas exchange kinetics during exercise. Med Sci Sports Exerc 1990; 22 (1): 62–71

    PubMed  CAS  Google Scholar 

  21. Finucane KE, Egan BA, Dawson SV. Linearity and frequency response of pneumotachometers. J Appl Physiol 1972; 32 (1): 121–6

    PubMed  CAS  Google Scholar 

  22. Wasserman K, Hansen JE, Sue DY, et al. Principles of Exercise Testing and Interpretation. 2nd ed. Philadelphia (PA): Lea & Febiger, 1994

    Google Scholar 

  23. Yeh MP, Adams TD, Gardner RM, et al. Turbine flowmeter vs. Fleisch pneumotachometer: a comparative study for exercise testing. J Appl Physiol 1987; 63 (3): 1289–95

    PubMed  CAS  Google Scholar 

  24. Wilmore JH, Davis JA, Norton AC. An automated system for assessing metabolic and respiratory function during exercise. J Appl Physiol 1976; 40 (4): 619–24

    PubMed  CAS  Google Scholar 

  25. Howson MG, Khamnei S, O’Connor DF, et al. The properties of a turbine device for measuring respiratory volumes in man [abstract]. J Physiol 1987; 382: 12P

    Google Scholar 

  26. Nelson SB, Gardner RM, Crapo RO, et al. Performance evaluation of contemporary spirometers. Chest 1990; 97 (2): 288–97

    Article  PubMed  CAS  Google Scholar 

  27. Hart JD, Withers RT. The calibration of gas volume measuring devices at continuous and pulsatile flows. Aust J Sci Med Sport 1996; 28 (2): 61–5

    PubMed  CAS  Google Scholar 

  28. Porszasz J, Barstow TJ, Wasserman K. Evaluation of a symmetrically disposed Pitot tube flowmeter for measuring gas flow during exercise. J Appl Physiol 1994; 77: 2659–65

    PubMed  CAS  Google Scholar 

  29. American Thoracic Society. Standardization of spirometry, 1994 update. Am J Respir Crit Care Med 1995; 152: 1107–36

    Google Scholar 

  30. Ruppel GL. Pulmonary function testing equipment. In: Manual of pulmonary function testing. 7th ed. St Louis (MO): Mosby, 1998: 245–93

    Google Scholar 

  31. Snow M. Instrumentation. In: Clausen JL, editor. Pulmonary function testing guidelines and controversies. London: Grune & Stratton, 1984: 27–47

    Google Scholar 

  32. Clemensen P, Christensen P, Norsk P, et al. A modified photo and magnetoacoustic multigas analyzer applied in gas exchange measurements. J Appl Physiol 1994; 76 (6): 2832–9

    PubMed  CAS  Google Scholar 

  33. Stromme SB, Ingjer F, Meen HD. Assessment of maximal aerobic power in specifically trained athletes. J Appl Physiol 1977; 42: 833–7

    PubMed  CAS  Google Scholar 

  34. Neumann G. Special performance capacity. In: Dirix A, Knuttgen HG, Tittel K, editors. The Olympic book of sports medicine. Oxford: Blackwell Scientific, 1988: 97–108

    Google Scholar 

  35. Sutton JR. V̇O2max: new concepts on an old theme. Med Sci Sports Exerc 1992; 24: 26–9

    PubMed  CAS  Google Scholar 

  36. Howley ET, Bassett DR, Welch HG. Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc 1995; 27 (9): 1292–301

    PubMed  CAS  Google Scholar 

  37. Gore CJ, Catcheside PG, French SN, et al. Automated V̇O2max calibrator for open-circuit indirect calorimetry systems. Med Sci Sports Exerc 1997; 29 (8): 1095–103

    Article  PubMed  CAS  Google Scholar 

  38. Jones NL, Kane JW. Quality control of exercise test measurement. Med Sci Sports Exerc 1979; 11: 368–72

    CAS  Google Scholar 

  39. Kannagi T, Bruce RA, Hossack KF, et al. An evaluation of the Beckman Metabolic Cart for measuring ventilation and aerobic requirements during exercise. J Card Rehab 1983; 3 (1): 38–53

    Google Scholar 

  40. Yates JW, Cullum MG. The validation of a metabolic cart without human subjects [abstract no. 1689]. Med Sci Sports Exerc 2001; 33 (5 Suppl.): S299

    Google Scholar 

  41. Huszczuk A, Whipp BJ, Wasserman K. A respiratory gas exchange simulator for routine calibration in metabolic studies. Eur Respir J 1990; 3: 465–8

    PubMed  CAS  Google Scholar 

  42. Prieur F, Busso T, Castells J, et al. A system to simulate gas exchange in humans to control quality of metabolic measurements. Eur J Appl Physiol 1998; 78 (6): 549–54

    Article  CAS  Google Scholar 

  43. Astrand P-O, Rodahl K. Textbook of work physiology. 3rd ed. New York (NY): McGraw-Hill, 1986

    Google Scholar 

  44. Davis JA. Direct determination of aerobic power. In: Maude PJ, Foster C, editors. Physiological assessment of human fitness. Champaign (IL): Human Kinetics, 1995: 9–17

    Google Scholar 

  45. Rietjens GJWM, Kuipers H, Kester ADM, et al. Validation of a computerized metabolic measurement system (Oxycon Pro) during low and high intensity exercise. Int J Sports Med 2001; 22: 291–4

    Article  PubMed  CAS  Google Scholar 

  46. Bassett DR, Howley ET, Thompson DL, et al. Validity of inspiratory and expiratory methods of measuring gas exchange with a computerized system. J Appl Physiol 2001; 91: 218–24

    PubMed  Google Scholar 

  47. Daniels J. Portable respiratory gas collection equipment. J Appl Physiol 1971; 31 (1): 164–7

    PubMed  CAS  Google Scholar 

  48. Johnson RE, Robbins F, Schilke R, et al. A versatile system for measuring oxygen consumption in man. J Appl Physiol 1967; 22 (2): 377–9

    PubMed  CAS  Google Scholar 

  49. Thoden JS. Testing aerobic power. In: MacDougall JD, Wenger HA, Green HJ, editors. Physiological testing of the high performance athlete. 2nd ed. Champaign (IL): Human Kinetics, 1991: 107–73

    Google Scholar 

  50. Holly RG. Fundamentals of cardiorespiratory exercise testing. In: Durstine JL, King AC, Painter PL, et al., editors. ACSM’s resource manual for guidelines for exercise testing and prescription. 2nd ed. Philadelphia (PA): Lea & Febiger, 1993: 247–57

    Google Scholar 

  51. Zeballos RJ, Weisman IM. Behind the scenes of cardiopulmonary exercise testing. Clin Chest Med 1994; 15 (2): 193–213

    PubMed  CAS  Google Scholar 

  52. Kissen AT, McGuire DW. New approach for on-line, continuous determination of oxygen consumption in human subjects. Aerosp Med 1967; 38 (7): 686–9

    PubMed  CAS  Google Scholar 

  53. Beaver WL, Wasserman K, Whipp BJ. On-line computer analysis and breath-by-breath graphical display of exercise function tests. J Appl Physiol 1973; 34 (1): 128–32

    PubMed  CAS  Google Scholar 

  54. Wilmore JH, Costill DL. Semi-automated systems approach to the assessment of oxygen uptake during exercise. J Appl Physiol 1974; 36: 618–20

    PubMed  CAS  Google Scholar 

  55. Jones NL. Evaluation of a microprocessor-controlled exercise testing system. J Appl Physiol 1984; 57 (5): 1312–8

    PubMed  CAS  Google Scholar 

  56. Matthews JI, Bush BA, Morales FM. Microprocessor exercise physiology systems vs a non-automated system: a comparison of data output. Chest 1987; 92 (4): 696–703

    Article  PubMed  CAS  Google Scholar 

  57. Versteeg PGA, Kippersluis GJ. Automated systems for measurement of oxygen uptake during exercise testing. Int J Sports Med 1989; 10 (2): 107–12

    Article  PubMed  CAS  Google Scholar 

  58. Babineau C, Leger L, Long A, et al. Variability of maximum oxygen consumption measurement in various metabolic systems. J Strength Cond Res 1999; 13 (4): 318–24

    Google Scholar 

  59. LaMere VJ, Brown K, Wigglesworth JK, et al. Reproducibility between three metabolic systems and validation by Douglas Bag method [abstract no. 52]. Med Sci Sports Exerc 1993; 25 (5 Suppl.): S9

    Google Scholar 

  60. Miles DS, Cox MH, Verde TJ. Four commonly utilized metabolic systems fail to produce similar results. Sports Med Train Rehab 1994; 5 (3): 189–98

    Google Scholar 

  61. Miodownik S, Carlon VA, Ferri E, et al. System of automated gas-exchange analysis for the investigation of metabolic processes. J Appl Physiol 2000; 89: 373–8

    PubMed  CAS  Google Scholar 

  62. Hiilloskorpi H, Manttari A, Pasanen M, et al. The comparison between three different respiratory gas-analysers [abstract no. 1789]. Med Sci Sports Exerc 2000; 31 (5 Suppl.): S354

    Google Scholar 

  63. Lothian F, Farrally MR, Mahoney C. Validity and reliability of the Cosmed K2 to measure oxygen uptake. Can J Appl Physiol 1993; 18 (2): 197–206

    Article  PubMed  CAS  Google Scholar 

  64. Unnithan VB, Wilson J, Buchanan D, et al. Validation of the Sensor Medics (S2900Z) metabolic cart for pediatric exercise training. Can J Appl Physiol 1994; 19 (4): 472–9

    Article  PubMed  CAS  Google Scholar 

  65. Yule E, Kaminsky LA, Sedlock DA, et al. Inter-laboratory reliability of V̇O2max and submaximal measurements [abstract no. 87]. Med Sci Sports Exerc 1996; 28 (5 Suppl.): S15

    Google Scholar 

  66. Skinner JS, Wilmore KM, Jaskolska A, et al. Reproducibility of maximal exercise test data in the HERITAGE Family Study. Med Sci Sports Exerc 1999; 31 (11): 1623–8

    Article  PubMed  CAS  Google Scholar 

  67. Jackson AS, Hartung GH, Bradley PW. An evaluation of an automated system for measurement of cardiorespiratory function during exercise [abstract no. 17]. Med Sci Sports Exerc 1983; 15 (2): 144

    Google Scholar 

  68. Durnin JVGA, Passmore R. Energy, work and leisure. London: Heinemann Educational, 1967

    Google Scholar 

  69. Kofranyi E, Michaelis HF. Ein tragbarer Apparat zur Bestimmung des Gasstoffwechsels. Arbeitsphysiologie 1949; 11: 148–50

    Google Scholar 

  70. Montoye HJ, Kemper HCG, Saris WHM, et al. Measuring physical activity and energy expenditure. Champaign (IL): Human Kinetics, 1996

    Google Scholar 

  71. Wolff HS. The integrating motor pneumotachograph: a new instrument for the measurement of energy expenditure by indirect calorimetry. Q J Exp Physiol 1958; 43: 270–83

    CAS  Google Scholar 

  72. Murray RH, Marko A, Kissen AT, et al. A new, miniaturized, multichannel, personal radiotelemetry system. J Appl Physiol 1968; 24 (4): 588–92

    PubMed  CAS  Google Scholar 

  73. Harrison MH, Brown GA, Belyavin AJ. The ‘Oxylog’: an evaluation. Ergonomics 1982; 25: 809–20

    Article  PubMed  CAS  Google Scholar 

  74. Louhevaara V, Ilmarinen J. Comparison of three field methods for measuring oxygen consumption. Ergonomics 1985; 28: 463–70

    Article  PubMed  CAS  Google Scholar 

  75. Kawakami Y, Nozaki D, Matsuo A, et al. Reliability of measurement of oxygen uptake by a portable telemetric system. Eur J Appl Physiol 1992; 65: 409–14

    Article  CAS  Google Scholar 

  76. Ienna T, Potts J, McKenzie D. Comparison of a portable telemetric oxygen analyser with the Medical Graphics 2001 Exercise System [abstract no. 51]. Med Sci Sports Exerc 1993; 25 (5 Suppl.): S9

    Google Scholar 

  77. Lucia A, Fleck SJ, Gotshall RW, et al. Validity and reliability of the Cosmed K2 instrument. Int J Sports Med 1993; 14: 380–6

    Article  PubMed  CAS  Google Scholar 

  78. Crandall CG, Taylor SL, Raven PB. Evaluation of the Cosmed K2 portable telemetric oxygen uptake analyzer. Med Sci Sports Exerc 1994; 26 (1): 108–11

    PubMed  CAS  Google Scholar 

  79. Bigard AX, Guezennec CY. Evaluation of the Cosmed K2 telemetry system during exercise at moderate altitude. Med Sci Sports Exerc 1995; 27 (9): 1333–538

    PubMed  CAS  Google Scholar 

  80. Peel C, Utsey C. Oxygen consumption using the K2 telemetry system and a metabolic cart. Med Sci Sports Exerc 1993; 25 (3): 396–400

    PubMed  CAS  Google Scholar 

  81. Schulz H, Helle S, Heck H. The validity of the telemetric system Cortex X1 in the ventilatory and gas exchange measurement during exercise. Int J Sports Med 1997; 18: 1–4

    Article  Google Scholar 

  82. Taylor C. Some properties of maximal and submaximal exercise with reference to physiological variation and the measurement of exercise tolerance. Am J Physiol 1944; 142: 200–12

    Google Scholar 

  83. Taylor HL, Buskirk E, Henschel A. Maximal oxygen uptake as an objective measure of cardio-respiratory performance. J Appl Physiol 1955; 8: 73–80

    PubMed  CAS  Google Scholar 

  84. Mitchell JH, Sproule BJ, Chapman CB. The physiological meaning of the maximal oxygen intake test. J Clin Invest 1958; 37: 538–47

    Article  PubMed  CAS  Google Scholar 

  85. Cotes JE, Woolmer RF. A comparison between twenty-seven laboratories of the results of analysis of an expired gas sample. J Physiol 1962; 163: 36P-37P

    Google Scholar 

  86. Katch VL, Sady SS, Freedson P. Biological variability in maximum aerobic power. Med Sci Sports Exerc 1982; 14 (1): 21–5

    Article  PubMed  CAS  Google Scholar 

  87. Armstrong LE, Costill DL. Variability of respiration and metabolism: responses to submaximal cycling and running. Res Q Exerc Sport 1985; 56 (2): 93–6

    Google Scholar 

  88. Hopkins WG, Hawley JA, Burke LM. Design and analysis of research on sport performance enhancement. Med Sci Sports Exerc 1999; 31 (3): 472–85

    Article  PubMed  CAS  Google Scholar 

  89. Hopkins WG. Measures of reliability in sports medicine and science. Sports Med 2000; 30 (1): 1–15

    Article  PubMed  CAS  Google Scholar 

  90. Myers J, Walsh D, Sullivan M, et al. Effect of sampling on variability and plateau in oxygen uptake. J Appl Physiol 1990; 68 (1): 404–10

    PubMed  CAS  Google Scholar 

  91. Blumoff SA, Fergusson CS, Longanecker JA, et al. Effect of sampling duration on peak V̇O2 in running [abstract no. 1495]. Med Sci Sports Exerc 1999; 31 (5 Suppl.): S302

    Google Scholar 

  92. Davies EE, Hahn HL, Spiro SG, et al. New technique for recording respiratory transients at the start of exercise. Respir Physiol 1974; 20: 69–79

    Article  PubMed  CAS  Google Scholar 

  93. Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med 1998; 26 (4): 217–38

    Article  PubMed  CAS  Google Scholar 

  94. Hopkins WG. Typical error versus limits of agreement: author’s reply. Sports Med 2000; 30 (5): 377–81

    Article  Google Scholar 

  95. Atkinson G, Nevill AM. Typical error versus limits of agreement. Sports Med 2000; 30 (5): 375–7

    Article  PubMed  CAS  Google Scholar 

  96. Hopkins WG. A new view of statistics. Internet Society for Sports Science, 2001 [online]. Available from URL: http://www.sportsci.org/resource/stats/ [Accessed 2001 Mar 12]

  97. Welch HG, Pedersen PK. Measurement of metabolic rate in hyperoxia. J Appl Physiol 1981; 51: 725–31

    PubMed  CAS  Google Scholar 

  98. Janicki JS, Gupta S, Ferris ST, et al. Long-term reproducibility of respiratory gas exchange measurements during exercise in patients with stable cardiac failure. Chest 1990; 97: 12–7

    Article  PubMed  CAS  Google Scholar 

  99. Nordrehaug JE, Danielson R, Stangeland L, et al. Respiratory gas exchange during treadmill exercise testing: reproducibility and comparison of different exercise protocols. Scand J Clin Lab Invest 1991; 51: 655–8

    Article  PubMed  CAS  Google Scholar 

  100. Becque MD, Katch V, Marks C, et al. Reliability and within subject variability of V̇E, V̇O2, heart rate and blood pressure during submaximum cycle ergometry. Int J Sports Med 1993; 14 (4): 220–3

    Article  PubMed  CAS  Google Scholar 

  101. Wilmore JH, Standorth PR, Turley KR, et al. Reproducibility of cardiovascular, respiratory, and metabolic responses to submaximal exercise: the HERITAGE Family Study. Med Sci Sports Exerc 1998; 30 (2): 259–65

    Article  PubMed  CAS  Google Scholar 

  102. Reybrouck T, Deroost F, Van-Der-Hauwaert LG. Evaluation of breath-by-breath measurement of respiratory gas exchange in pediatric exercise testing. Chest 1992; 102: 147–52

    Article  PubMed  CAS  Google Scholar 

  103. Unnithan VB, Murray LA, Buchanan D, et al. Reproducibility of cardio-respiratory measurements during submaximal and maximal running in children [abstract no. 46]. Med Sci Sports Exerc 1993; 25 (5 Suppl.): S9

    Google Scholar 

  104. Jones NL, Campbell EJM, Robertson DG, et al. Clinical exercise testing. Philadelphia (PA): W.B. Saunders, 1975

    Google Scholar 

  105. Froelicher VF, Brammell H, Davis G, et al. A comparison of the reproducibility and physiologic response to three maximal treadmill exercise protocols. Chest 1974; 65: 512–7

    Article  PubMed  Google Scholar 

  106. McArdle WD, Katch FI, Pechar GS. Comparison of continuous and discontinuous treadmill and bicycle tests for max V̇O2. Med Sci Sports Exerc 1973; 5: 156–60

    CAS  Google Scholar 

  107. Hopkins WG. Reliability from consecutive pairs of trials [Excel spreadsheet]. In: Anew view of statistics. Internet Society for Sport Science, 2000 [online]. Available from URL: http://www.sportsci.org/resource/stats/xrely.xls [Accessed 2000 Nov 16]

  108. Garrard CS, Emmons C. The reproducibility of the respiratory responses to maximum exercise. Respiration 1986; 49: 94–100

    Article  PubMed  CAS  Google Scholar 

  109. Bingisser R, Kaplan V, Scherer T, et al. Effect of training on repeatability of cardiopulmonary exercise performance in normal men and women. Med Sci Sports Exerc 1997; 29 (11): 1499–504

    Article  PubMed  CAS  Google Scholar 

  110. Pivarnik JM, Dwyer MC, Lauderdale MA. The reliability of aerobic capacity (V̇O2max) testing in adolescent girls. Res Q Exerc Sport 1996; 67 (3): 345–8

    PubMed  CAS  Google Scholar 

  111. Rivera-Brown AM, Rivera MA, Frontera WR. Reliability of V̇O2max in adolescent runners: a comparison between plateau achievers and nonachievers. Pediatr Exerc Sci 1995; 7 (2): 203–10

    Google Scholar 

  112. Turley KR, Rogers DM, Harper KM, et al. Maximal treadmill versus cycle ergometry testing in children: differences, reliability, and variability of responses. Pediatr Exerc Sci 1995; 7 (1): 49–60

    Google Scholar 

  113. Foster C. Physiological testing: does it help the athlete? Physician Sports Med 1989; 17: 103–10

    Google Scholar 

  114. Macfarlane DJ. Who do exercise physiologists test best - athletes or themselves. NZ J Sports Med 1991; 19: 13–5

    Google Scholar 

  115. Beaver WL. Water vapor corrections in oxygen consumption calculations. J Appl Physiol 1973; 35 (6): 928–31

    PubMed  CAS  Google Scholar 

  116. Hughson RL, Northey DR, Xing HC, et al. Alignment of ventilation and gas fraction for breath-by-breath respiratory gas exchange calculations in exercise. Comput Biomed Res 1991; 24: 118–28

    Article  PubMed  CAS  Google Scholar 

  117. Proctor DN, Beck KC. Delay time adjustments to minimize errors in breath-by-breath measurement of V̇O2 during exercise. J Appl Physiol 1996; 81 (6): 2495–9

    PubMed  CAS  Google Scholar 

  118. Sainsbury DA, Gore CJ, Withers RT, et al. An on-line microcomputer program for the monitoring of physiological variables during rest and exercise. Comput Biol Med 1988; 18: 17–24

    Article  PubMed  CAS  Google Scholar 

  119. Wagner JA, Steven MH, Dahms TE, et al. Validation of open circuit method for the determination of oxygen consumption. J Appl Physiol 1973; 34 (6): 859–63

    PubMed  CAS  Google Scholar 

  120. Gore CJ. Quality assurance in exercise physiology laboratories. In: Gore CJ, editor. Physiological testing for elite athletes (Australian Sports Commission). Champaign (IL): Human Kinetics, 2000: 3–11

    Google Scholar 

  121. Hopkins WG, Gore CJ. Error of measurement in anthropometry. In: Norton K, Olds T, editors. Anthropometrica. 2nd ed. Champaign (IL): Human Kinetics. In press

  122. Norton K, Marfell-Jones M, Whittingham N, et al. Anthropometric assessment protocols. In: Gore CJ, editor. Physiological testing for elite athletes (Australian Sports Commission). Champaign (IL): Human Kinetics, 2000: 66–85

    Google Scholar 

  123. Lamarra N, Whipp BJ. Measurement of pulmonary gas exchange. In: Maude PJ, Foster C, editors. Physiological assessment of human fitness. Champaign (IL): Human Kinetics, 1995: 19–35

    Google Scholar 

  124. Novitsky S, Segal KR, Chatr-Aryamontri B, et al. Validity of a new portable indirect calorimeter: the Aero Sport TEEM 100. Eur J Appl Physiol 1995; 70: 462–7

    Article  CAS  Google Scholar 

  125. Wideman L, Stoudemire NM, Pass KA, et al. Assessment of the Aerosport TEEM 100 portable metabolic measurement system. Med Sci Sports Exerc 1996; 28 (4): 509–15

    Article  PubMed  CAS  Google Scholar 

  126. Melanson EL, Freedson PS, Hendelman D, et al. Reliability and validity of a portable metabolic measurement system. Can J Appl Physiol 1996; 21 (2): 109–19

    Article  PubMed  CAS  Google Scholar 

  127. Norris SR, Smith DJ. Examination of the performance of three metabolic measurement systems [abstract no. 1493]. Med Sci Sports Exerc 1999; 31 (5 Suppl.): S302

    Google Scholar 

  128. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; I (8474): 307–10

    Article  Google Scholar 

  129. Reitjens GJWM, Keizer HA, Kuipers H. Validation of Oxycon Pro measurements during submaximal and maximal exercise intensities [abstract no. 1589]. Med Sci Sports Exerc 2000; 32 (5 Suppl.): S317

    Google Scholar 

  130. Prieur F, Busso T, Castells J, et al. Validity of oxygen uptake measurements during exercise under moderate hyperoxia. Med Sci Sports Exerc 1998; 30 (6): 958–62

    Article  PubMed  CAS  Google Scholar 

  131. Engebretson JE. Validity of a breath-by-breath gas exchange analysis system [abstract no. 1881]. Med Sci Sports Exerc 1998; 30 (5 Suppl.): S330

    Google Scholar 

  132. Cullum MG, Welch H, Yates JW. Evaluation of an automated metabolic cart compared to Douglas Bag measurement of V̇O2max [abstract no. 1494]. Med Sci Sports Exerc 1999; 31 (5 Suppl.): S302

    Google Scholar 

  133. Storer TW, Bunnell TJ, Hand A, et al. Validation of a new metabolic measurement cart [abstract]. Int J Sports Med 1995; 16 (3): 101

    Google Scholar 

  134. Grice C, Murphy A. Reliability of the Aerosport kb1-c ambulatory gas analysis system. Abstracts of the Australian Conference of Science and Medicine in Sport. Sports Medicine Australia; 1998 Oct 13–16; Adelaide, 132

  135. King GA, McLaughlin JE, Howley ET, et al. Validation of Aerosport KB1-C portable metabolic system. Int J Sports Med 1999; 20 (5): 304–8

    Article  PubMed  CAS  Google Scholar 

  136. Lampard HA, Nethery VM, D’Acquisto LJD. Assessment of the Aerosport KB1-C and its associated telemetry system [abstract no. 1597]. Med Sci Sports Exerc 2000; 32 (5 Suppl.): S319

    Google Scholar 

  137. Hausswirth C, Thepaut-Mathieu C, Biggard AX, et al. The Cosmed K4 telemetry system as an accurate device for oxygen uptake measurements during exercise. In: Marconnet P, editor. Proceedings of the First Annual Congress. Frontiers in Sports Science: The European Perspective. European College of Sports Science; 1996 May 28–31; Nice. Nice: European College of Sports Science: 634–5

    Google Scholar 

  138. Faina M, Pistelli R, Franzoso G, et al. Validity and reliability of a new telemetric portable system with CO2 analyzer (K4-Cosmed). In: Marconnet P, editor. Proceedings of the First Annual Congress. Frontiers in Sports Science: The European Perspective. European College of Sports Science; 1996 May 28–31; Nice. Nice: European College of Sports Science: 572–3

    Google Scholar 

  139. McLaughlin JE, King GA, Howley ET, et al. Assessment of the Cosmed K4b2 portable metabolic system [abstract no. 1411]. Med Sci Sports Exerc 1999; 31 (5 Suppl.): S285

    Google Scholar 

  140. McLaughlin JE, King GA, Howley ET, et al. Validation of the COSMED K4b2 portable metabolic system. Int J Sports Med 2001; 22: 280–4

    Article  PubMed  CAS  Google Scholar 

  141. Doyon KH, Perry S, Abe D, et al. Field testing of V̇O2peak in cross-country skiers with portable breath-by-breath system. Can J Appl Physiol 2001; 26 (1): 1–11

    Article  PubMed  CAS  Google Scholar 

  142. Parr BB, Strath SJ, Bassett DR, et al. Validation of the Cosmed K4b2 portable metabolic measurement system [abstract no. 1691]. Med Sci Sports Exerc 2001; 33 (5 Suppl.): S300

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duncan J. Macfarlane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macfarlane, D.J. Automated Metabolic Gas Analysis Systems. Sports Med 31, 841–861 (2001). https://doi.org/10.2165/00007256-200131120-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200131120-00002

Keywords

Navigation