Skip to main content

Advertisement

Log in

Warm-Up and Muscular Injury Prevention An Update

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

Musculotendinous injuries are responsible for a significant proportion of injuries incurred by athletes. Many of these injuries are preventable. Importantly, musculotendinous injuries have a high incidence of recurrence. Thus, muscle injury prevention is advocated by coaches and trainers. Yet, most of the recommendations for muscle injury prevention are attempted by athletes and taught by coaches without supporting scientific evidence.

This paper reviews the mechanics of muscular injury, associated and predisposing factors, and methods of prevention with a review of the supporting research and rationale for these methods with an emphasis on warm-up, stretching and strengthening.

Muscles that are capable of producing a greater force, a faster contraction speed and subjected to a greater stretch are more likely to become injured. Many factors have been associated with muscular injury. From current research, some conclusions and recommendations for muscle injury prevention can be made. Overall and muscular conditioning and nutrition are important. Proper training and balanced strengthening are key factors in prevention of musculotendinous injuries as well. Warm-up and stretching are essential to preventing muscle injuries by increasing the elasticity of muscles and smoothing muscular contractions. Improper or excessive stretching and warming up can, however, predispose to muscle injury. Much research is still needed in this important aspect of sports medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abraham WM. Factors in delayed muscle soreness. Medicine and Science in Sports 9(1): 11–20, 1977

    PubMed  CAS  Google Scholar 

  • Almekinders LC, Garrett Jr WE, Seaber AV. Histopathology of muscle tears in stretching injuries. Transactions of the Orthopaedic Research Society 9: 305, 1984a

    Google Scholar 

  • Almekinders LC, Garrett Jr WE, Seaber AV. Pathophysiologic response to muscle tears in stretching injuries. Transactions of the Orthopaedic Research Society 9: 307, 1984b

    Google Scholar 

  • Almekinders LC, Gilbert JA. Healing of experimental muscle strains and the effects of non-steroidal anti-inflammatory medications. American Journal of Sports Medicine 14(4): 303–308, 1986

    Article  PubMed  CAS  Google Scholar 

  • Anzel SH, Covey KW, Weiner AD, Lipscomb PR. Disruption of muscles and tendons. Surgery 45(3): 406–414, 1959

    PubMed  CAS  Google Scholar 

  • Apple DV, O’Toole J, Annis C. Professional basketball injuries. Physician and Sportsmedicine 10(11): 81–86, 1982

    Google Scholar 

  • Arciero RA, Shishido NS, Parr J. Acute anterolateral compartment syndrome secondary to rupture of the peroneus longus muscle. American Journal of Sports Medicine 12(5): 366–367, 1984

    Article  PubMed  CAS  Google Scholar 

  • Armstrong RB, Ogilvie RW, Schwane JA. Eccentric excrcisc-induced injury to rat skeletal muscle. Journal of Applied Physiology 54(1): 80–93, 1983

    PubMed  CAS  Google Scholar 

  • Arner O, Lindholm A. What is tennis leg? Acta Chirurgica Scandinavica 116: 73–77, 1958

    PubMed  CAS  Google Scholar 

  • Arvidsson I, Eriksson E, Haggmark T, Johnsson RT. Isokinetic thigh muscle strength after ligament reconstruction in the knee joint. International Journal of Sports Medicine 2: 7–11, 1981

    Article  PubMed  CAS  Google Scholar 

  • Asmussen E. Positive and negative muscular work. Acta Physiologica Scandinavica 28: 364–382, 1953

    Article  PubMed  CAS  Google Scholar 

  • Asmussen E. Observations on experimental muscular soreness. Acta Rhcumatica Scandinavica 2: 109–116, 1956

    CAS  Google Scholar 

  • Asmussen E, Hansen O, Lammert O. The relation between isometric and dynamic muscle stretch in man. Communications from the testing and observation institute of the Danish National Association for infantile paralysis, Nov 20, 1965

  • Aso K, Torisu T. Muscle belly tear of the triceps. American Journal of Sports Medicine 12(6): 485–487, 1984

    Article  PubMed  CAS  Google Scholar 

  • Baker BE. Current concepts in the diagnosis and treatment of musculotendinous injuries. Medicine and Science in Sports and Exercise 16(4): 323–327, 1984

    PubMed  CAS  Google Scholar 

  • Banus MG, Zetlin AM. The relation of isometric tension to length in skeletal muscle. Journal of Cellular and Comparative Physiology 12: 403–420, 1938

    Article  Google Scholar 

  • Bass AL. Injuries of the leg in football and ballet. Proceedings of the Royal Society of Medicine 60: 527–532, 1967

    PubMed  CAS  Google Scholar 

  • Beaulieu JE. Developing a stretching program. Physician and Sportsmedicine 9(11): 59–60, 1981

    Google Scholar 

  • Bender JA, Pierson JK, Kaplan HD, Johnson AJ. Factors affecting the occurrence of knee injuries. Journal of the Association of Physical and Mental Rehabilitation 18: 130–134, 1964

    CAS  Google Scholar 

  • Benjamin B, Roth P. Warming up vs stretching. Running Times 34 (Nov): 15–21, 1979

    Google Scholar 

  • Berson BL, Rolnick AM, Ramos CG, Thornton J. An epidemiologie study of squash injuries. American Journal of Sports Medicine 9(2): 103–106, 1981

    Article  PubMed  CAS  Google Scholar 

  • Blix M. Die Lange und die Spannung des Musckels. Skandinavisches Archivs für Physiologie 5: 149–206, 1895

    Google Scholar 

  • Borg TK, Caulfield JB. Morphology of connective tissue in skeletal muscle. Tissue Cell 12(1): 197–207, 1980

    Article  PubMed  CAS  Google Scholar 

  • Bosco C, Komi PV. Mechanical characteristics and fiber composition of human leg extensor muscle. European Journal of Applied Physiology 41: 275–284, 1979

    Article  CAS  Google Scholar 

  • Brewer BJ. Mechanism of injury to the musculotendinous unit. American Academy of Orthopaedic Surgeons: Instructional Lectures 17: 354–358, 1960

    Google Scholar 

  • Burke RE, Levine DN, Tsearis P, Zajac III FE. Physiological types and histochemical profiles in motor units of the cat gastrocnemius. Journal of Physiology 234: 723–728, 1973

    PubMed  CAS  Google Scholar 

  • Burkett LN. Causative factors in hamstring strains. Medicine and Science in Sports 2: 39–42, 1970

    PubMed  CAS  Google Scholar 

  • Burkett LN. Cause and prevention of hamstring pulls. Athletic Journal 51: 34, 1971

    Google Scholar 

  • Burkett LN. Investigation into hamstring strains: the case of the hybrid muscle. American Journal of Sports Medicine 3: 228–231, 1975

    Article  CAS  Google Scholar 

  • Canale ST, Cantler ED, Sisk TD, et al. A chronicle of injuries of an American intercollegiate football team. American Journal of Sports Medicine 9: 384–389, 1981

    Article  PubMed  CAS  Google Scholar 

  • Casella C. Tensile force in total striated muscle, isolated fiber and sarcolemma. Acta Physiologica Scandinavica 21: 380–401, 1950

    Article  PubMed  CAS  Google Scholar 

  • Cavagna GA. Storage and utilization of elastic energy in skeletal muscle. Exercise and Sports Science Review 5: 89–129, 1977

    CAS  Google Scholar 

  • Christensen CS, Wiseman DC. Strength, the common variable in hamstring strain. Athletic Training 7: 36–40, 1971

    Google Scholar 

  • Ciullo JV, Zarins B. Biomechanics of the musculotendinous unit: relation to athletic performance and injury. Clinics in Sports Medicine 2(1): 71–86, 1983

    PubMed  CAS  Google Scholar 

  • Cureton TK. Flexibility as an aspect of physical fitness. Research Quarterly American Association for Health and Physical Education 12: 381–391, 1941

    Google Scholar 

  • Davies CTM, White MJ. Muscle weakness following eccentric work in man. Pflügers Archiv 392: 168–171, 1981

    Article  PubMed  CAS  Google Scholar 

  • DcBruyn-Prevost P. The effects of various warming up intensities and durations upon some physiologic variables during exercise corresponding to the WC10. European Journal of Applied Physiology 43: 93–100, 1980

    Article  Google Scholar 

  • DeVries HA. Prevention of muscular distress and exercise. Research Quarterly 32: 177–185, 1961a

    Google Scholar 

  • DeVries HA. Electromyographic observations of the effects of static stretching upon muscular distress. Research Quarterly 32: 468–479, 1961b

    Google Scholar 

  • Dinitiman GB. The effects of various training programs on running speeds. Research Quarterly 35: 456–461, 1964

    Google Scholar 

  • Dornan P. A report on 140 hamstring injuries. Australian Journal of Sports Medicine 4: 30–36, 1971

    Google Scholar 

  • Edwards RHT, Mills KR, Newham DJ. Measurements of severity and distribution of experimental muscle tenderness. Journal of Physiology 317: 1P–2P, 1981

    Google Scholar 

  • Ekstrand J, Gillquist J. The frequency of muscle tightness and injuries in soccer players. American Journal of Sports Medicine 10(2): 75–78, 1982

    Article  PubMed  CAS  Google Scholar 

  • Ekstrand J, Gillquist J. The avoidability of soccer injuries. International Journal of Sports Medicine 4: 124–128, 1983a

    Article  PubMed  CAS  Google Scholar 

  • Ekstrand J, Gillquist J, Liljedahl SO. Prevention of soccer injuries: supervision by doctors and physiotherapists. American Journal of Sports Medicine 11: 116–120, 1983b

    Article  PubMed  CAS  Google Scholar 

  • Eiden HR. Aging rat tail tendons. Journal of Gerontology 19: 173–178, 1964

    Google Scholar 

  • Fixx J. Second book of running, Random House, New York City, 1980

    Google Scholar 

  • Francis KT. Delayed muscle soreness: a review. Journal of Orthopaedics and Sports Physical Therapy 5(1): 10–13, 1983

    CAS  Google Scholar 

  • Friden J, Sjostrom M, Ekblom B. Myofibrillar damage following intense eccentric exercise in man. International Journal of Sports Medicine 4(3): 170–176, 1983

    Article  PubMed  CAS  Google Scholar 

  • Fromison AI. Tennis leg. Journal of the American Medical Association 209: 415–416, 1969

    Article  Google Scholar 

  • Fuller PJ. Musculotendinous leg injuries. Australian Family Physician 13(7): 495–498, 1984

    PubMed  CAS  Google Scholar 

  • Garrett Jr WE. Strains and sprains in athletes. Postgraduate Medicine 73(3): 200–209, 1983

    PubMed  Google Scholar 

  • Garrett Jr WE, Califf JC, Bassett FH III. Histochemical correlates of hamstring injuries. American Journal of Sports Medicine 12(2): 98–103, 1984

    Article  PubMed  Google Scholar 

  • Garrett Jr WE, Mumma M, Lucaveche CL. Ultrastructural differences in human muscle fiber types. Orthopedic Clinics of North America 14: 413–425, 1983b

    PubMed  Google Scholar 

  • Garrett Jr WE, Nikolaou PK, Ribbeck BM, Glisson RR, Seaber AV. The effect of muscle architecture on the biomechanical failure properties of skeletal muscle under passive extension. American Journal of Sports Medicine 16(1): 7–12, 1988

    Article  PubMed  Google Scholar 

  • Garrett Jr WE, Safran MR, Seaber AV, Glisson RR, Ribbeck BM. Biomechanical comparison of stimulated and nonstimulated skeletal muscle pulled to failure. American Journal of Sports Medicine 15(5): 448–454, 1987

    Article  PubMed  Google Scholar 

  • Garrick JG, Requa RK. Epidemiology of women’s gymnastics injuries. American Journal of Sports Medicine 8(4): 261–264, 1980

    Article  PubMed  CAS  Google Scholar 

  • Glick JM. Muscle strains: prevention and treatment. Physician and Sportsmedicine 8(11): 73–77, 1980

    Google Scholar 

  • Gordon AM, Huxley AF, Julian FJ. Tension development in highly stretched vertebrate muscle fibres. Journal of Physiology (London) 84: 170–192, 1966

    Google Scholar 

  • Gould RP. The microanatomy of muscle. In Bourne (Ed.) The structure and function of muscle, pp. 186–243, Academic Press, New York, 1973

    Google Scholar 

  • Grant RT, Pearson RSB. The blood circulation in the human limb: observations on the differences between the proximal and distal parts and remarks on the regulation of body temperature. Clinical Science 3: 119–139, 1938

    Google Scholar 

  • Grimby G, Gustafsson E, Peterson L, Renstrom P. Quadriceps function and training after knee ligament surgery. Medicine and Science and Sports 12: 70–75, 1980

    CAS  Google Scholar 

  • Gross J. Thermal denaturation of collagen in the dispersed and solid state. Science 143: 960–961, 1964

    Article  PubMed  CAS  Google Scholar 

  • Hage P. Strength: one component of a winning team. Physician and Sportsmedicine 8: 115–120, 1981

    Google Scholar 

  • Heiser TM, Weber J, Sullivan G, Clare P, Jacobs RR. Prophylaxis and management of hamstring muscle injuries in intercollegiate football. American Journal of Sports Medicine 12: 368–370, 1984

    Article  PubMed  CAS  Google Scholar 

  • Hill AV. Energy liberation and ‘viscosity’ in muscle. Journal of Physiology 93: 4P–5P, 1938

    Google Scholar 

  • Hill AV. The dimensions of animals and their muscular dynamics. Science Progress 38: 209–230, 1950

    Google Scholar 

  • Hill AV. The heat produced by a muscle after the last shock of a tetanus. Journal of Physiology 159: 518–545, 1961

    PubMed  CAS  Google Scholar 

  • Ivy JL, Withers TR. Brose G, Maxwell BD, Costili DL. Isokinetic contractile properties of the quadriceps with relation to fiber type. European Journal of Applied Physiology 47: 247–255, 1981

    Article  CAS  Google Scholar 

  • Jackson DW, Jarrett H, Bailey D, Kausek J, Swanson J, et al. Injury prediction in the young athlete: a preliminary report. American Journal of Sports Medicine 6(1): 6–13, 1978

    Article  PubMed  CAS  Google Scholar 

  • Jensen Pertinent facts about warm up. Athletic Journal 56: 72–75, 1975

  • Johnson A, Polgar J, Weightman PD, Appleton D. Data on the distribution of fiber types in thirty-six human muscles. Journal of Neurological Science 18: 111–129, 1973

    Article  CAS  Google Scholar 

  • Karpovich PV, Hale C. Effect of warm up on physical performance. Journal of the American Medical Association 162: 1117–1119. 1956

    Article  PubMed  Google Scholar 

  • Katz B. The relation between force and speed in muscular contraction. Journal of Physiology 96: 45–64, 1939

    PubMed  CAS  Google Scholar 

  • Kirby RL, Simms FC, Symington VJ, Garner JB. Flexibility and musculoskeletal symptomatology in female gymnasts and age-matched controls. American Journal of Sports Medicine 9(3): 160–164, 1981

    Article  PubMed  CAS  Google Scholar 

  • Klaffs CE, Arnheim DD. Modern principles of athletic training, CV Mosby Co, St Louis, 1963

    Google Scholar 

  • Klein KK, Allman FL. The knee in sports, Pemberton Press, Austin, 1969

    Google Scholar 

  • Komi PV, Buskirk ER. Effect of eccentric and concentric muscle conditioning on tension and electrical activity of human muscle. Ergonomics 15(4): 417–434, 1972

    Article  PubMed  CAS  Google Scholar 

  • Komi PV, Rusko H. Quantitative evaluation of mechanical and electrical changes during fatigue loading of eccentric and concentric work. Scandinavian Journal of Rehabilitation Medicine (Suppl. 3): 121–126, 1974

  • Komi PV, Viitasalo JT. Changes in motor unit activity and metabolism in human skeletal muscle during and after repeated eccentric and concentric contractions. Acta Physiologica et Scandinavia 100: 246–254, 1977

    Article  CAS  Google Scholar 

  • Krejci V, Koch P. Muscle and tendon injuries in athletes, Year Book Medical Publishers, Chicago, 1970

    Google Scholar 

  • Kulund DN, Tottossy M. Warm up, strength and power. Orthopedic Clinics of North America 14(2): 427–448, 1983

    PubMed  CAS  Google Scholar 

  • La Ban MM. Collagen tissue: implications of its response to stress in vitro. Archives of Physical Medicine and Rehabilitation 43: 461–466, 1962

    Google Scholar 

  • Lehmann JF, Masock AJ, Warren CG, Koblanski JN. Effect of therapeutic temperatures on tendon extensibility. Archives of Physical Medicine and Rehabilitation 51: 481–487, 1970

    PubMed  CAS  Google Scholar 

  • Lehmann JF, Warren CG, Scham SM. Therapeutic heat and cold. Clinical Orthopaedics and Related Research 99: 207–245, 1974

    Article  PubMed  Google Scholar 

  • Liemohn W. Factors related to hamstring strains. Journal of Sports Medicine 18: 71–76, 1978

    CAS  Google Scholar 

  • MacConaill MA, Basmajian JV. Muscle movements, Williams and Wilkins, Baltimore, 1969

    Google Scholar 

  • McClure JG. Gastrocnemius musculotendinous rupture: a condition confused with thrombophlebitis. Southern Medical Journal 77(9): 1143–1145, 1984

    Article  PubMed  CAS  Google Scholar 

  • McMaster PE. Tendon and muscle ruptures — clinical and experimental studies on the causes and location of subcutaneous ruptures. Journal of Bone and Joint Surgery 15: 705–722, 1933

    Google Scholar 

  • McMaster WC, Maarten W. Injuries in soccer. American Journal of Sports Medicine 6: 354–357, 1978

    Article  PubMed  CAS  Google Scholar 

  • McNamee J. Overuse injury of the legs. Medical Journal of Australia 1: 426–430, 1978

    PubMed  CAS  Google Scholar 

  • Millar AP. An early stretching for calf muscle strains. Medicine and Science in Sports 8: 39–42, 1976

    PubMed  CAS  Google Scholar 

  • Millar AP. Strains of the posterior calf musculature (“Tennis Leg”). American Journal of Sports Medicine 7: 172–174, 1979

    Article  PubMed  CAS  Google Scholar 

  • Miller WA. Rupture of the musculotendinous juncture of the medial head of the gastrocnemius muscle. American Journal of Sports Medicine 5(5): 191–193, 1977

    Article  PubMed  CAS  Google Scholar 

  • Moller MHL, Ekstrand J, Oberg BE, Gillquist J. Duration of stretching effect on range of motion in lower extremities. Archives of Physical Medicine and Rehabilitation 66: 171–173, 1985a

    PubMed  CAS  Google Scholar 

  • Mueller FO, Blyth CS. A survey of 1981 college La Crosse injuries. Physician and Sportsmedicine 10(9): 87–93, 1982

    Google Scholar 

  • Newham DJ, McPhail G, Mills KR, Edwards RHT. Ultrastructural changes after concentric and eccentric contractions of human muscle. Journal of Neurological Science 61: 109–122, 1983

    Article  CAS  Google Scholar 

  • Nicholas JA. Injuries to knee ligament: relationship to looseness and tightness in football players. Journal of the American Medical Association 212: 2236–2239, 1970

    Article  PubMed  CAS  Google Scholar 

  • Nicholas JA. Injuries in sports — recent developments. Orthopedic Clinics of North America 8: 495–498, 1977

    Google Scholar 

  • Nikolaou P, Macdonald BL, Glisson RR, Seaber AV, Garrett Jr WE. Biomechanical and histological evaluation of muscle after controlled strain injury. American Journal of Sports Medicine 15(1): 9–14, 1987

    Article  PubMed  CAS  Google Scholar 

  • Nikolaou P, Macdonald BL, Seaber AV, Garrett Jr WE. Muscle recovery after controlled injury: biomechanical and histological evaluation. Transactions of the Orthopaedic Research Society 11: 225, 1986

    Google Scholar 

  • Oakes BW. Hamstring muscle injuries. Australian Family Physician 13(8): 587–591, 1984

    PubMed  CAS  Google Scholar 

  • O’Donoghue DM. Treatment of injuries to athletes, 3rd ed., WB Saunders, Philadelphia, 1976

    Google Scholar 

  • O’Neil R. Prevention of hamstring and groin strain. Athletic Training 11: 27–31, 1970

    Google Scholar 

  • Pritchett JW. High cost of high school football injuries. American Journal of Sports Medicine 8(3): 197–199, 1980

    Article  PubMed  CAS  Google Scholar 

  • Ralston HJ, Inman VT, Strait LA, Shaffrath MD. Mechanisms of human isolated voluntary muscle. American Journal of Physiology 151: 612–621, 1947

    PubMed  CAS  Google Scholar 

  • Ramsey RW, Street SF. The isometric length-tension diagram of isolated skeletal muscle fibers of the frog. Journal of Cellular and Comparative Physiology 15: 11–34, 1940

    Article  CAS  Google Scholar 

  • Rapoport SI. Mechanical properties of the sarcolemma and myoplasm in frog muscle as a function of sarcomere length. Journal of General Physiology 59: 559–585, 1972

    Article  PubMed  CAS  Google Scholar 

  • Renstrom P, Peterson L. Groin injuries in athletes. British Journal of Sports Medicine 14: 30–36, 1980

    Article  PubMed  CAS  Google Scholar 

  • Rigby BJ. The effect of mechanical extension upon thermal stability of collagen. Biochemica et Biophysica Acta 79: 634–636, 1964

    CAS  Google Scholar 

  • Rigby BJ, Hirai N, Spikes JD, Eyring H. The mechanical properties of rat tail tendon. Journal of General Physiology 43: 265–283, 1959

    Article  PubMed  CAS  Google Scholar 

  • Robinson S, Meyer FR, Newton JL, Ts’ao CH, Holgersen LO. Relations between sweating, cutaneous blood flow and body temperature at work. American Journal of Physiology 20: 575–582, 1965

    CAS  Google Scholar 

  • Ryan AJ. Quadriceps strain, rupture and charley horse. Medicine and Science in Sports 1: 106–111, 1969

    Google Scholar 

  • Safran MR, Garrett Jr WE, Seaber AV, Glisson RR, Ribbeck BM. The role of warm up in muscular injury prevention. American Journal of Sports Medicine 16(2): 123–129, 1988

    Article  PubMed  CAS  Google Scholar 

  • Saltin Gagge Stolwijk JAJ. Muscle temperature during submaximal exercise in man. Journal of Applied Physiology 25: 679–688, 1968

    PubMed  CAS  Google Scholar 

  • Schultz P. Flexibility: day of the static stretch. Physician and Sportsmedicine 7: 109–117, 1979

    Google Scholar 

  • Sichel FJM. The elasticity of isolated resting skeletal muscle fibers. Journal of Cellular and Comparative Physiology 5(1): 21–42, 1934

    Article  Google Scholar 

  • Sigerseth PO, Haliski CC. The flexibility of football players. Research Quarterly of the American Association of Health and Physical Education 21: 394–398, 1950

    Google Scholar 

  • Slocum DB, James SL. Biomechanics of running. Journal of the American Medical Association 205: 721–728, 1968

    Article  PubMed  CAS  Google Scholar 

  • Smodlaka VN. Groin pain in soccer players. Physician and Sportsmedicine 8: 47–61, 1980

    Google Scholar 

  • Southmayd W, Hoffman M. Sports health: the complete book of athletic injuries, Quick Fox Publishing Company, New York, 1981

    Google Scholar 

  • Stolov WC, Weilepy Jr TG. Passive length tension relationship on intact muscle, epimysium, and tendon in normal and denervated gastrocnemius of the rat. Archives of Physical Medicine and Rehabilitation 47: 612–620, 1966

    PubMed  CAS  Google Scholar 

  • Taylor DC, Seaber AV, Garrett Jr WE. Repetitive stretching of muscles and tendons to a specific tension. Transactions of the Orthopaedic Research Society 10: 41, 1985

    Google Scholar 

  • Taylor DC, Seaber AV, Garrett Jr WE. Response of muscle tendon units to cyclic repetitive stretching. Transactions of the Orthopaedic Research Society 10: 84, 1985

    Google Scholar 

  • Tesch P, Karlsson J. Isometric strength performance and muscle fiber type distribution in man. Acta Physiologica Scandinavica 103: 47–51, 1978

    Article  PubMed  CAS  Google Scholar 

  • Thorstensson A, Karlsson J. Fatiguability and fiber composition of human skeletal muscle. Acta Physiologica Scandinavica 98: 312–322, 1976

    Google Scholar 

  • Tihanyi J, Apor P, Fekete G. Force-velocity-power characteristics and fiber composition in human knee extensor muscles. European Journal of Applied Physiology 48: 331–343, 1982

    Article  CAS  Google Scholar 

  • Tipton CM, Schild RJ, Tomaner RJ. Influence of physical activity on the strength of knee ligaments in rats. American Journal of Physiology 212: 283–287, 1966

    Google Scholar 

  • VanBrocklin JD, Ellis DG. A study of the mechanical behavior toe extensor tendons under applied stress. Archives of Physical Medicine and Rehabilitation 47: 369–373, 1965

    Google Scholar 

  • Viidik A. Functional properties of collagenous tissues. In Hall & Jackson (Eds) International review of connective tissue research, Vol. 6, pp. 127–215, Academic Press, New York, 1973

    Google Scholar 

  • Viidik A. The effect of training on the tensile strength of isolated rabbit tendons. Scandinavian Journal of Plastic and Reconstructive Surgery 1: 141–147, 1967

    Article  PubMed  CAS  Google Scholar 

  • Warren CG, Lehmann JF, Koblanski JN. Elongation of rat tail tendon: effect of load and temperature. Archives of Physical Medicine and Rehabilitation 51: 465–474, 1971

    Google Scholar 

  • Waugh RL, Hathcock Elliott JL. Ruptures of muscles and tendons: with particular reference to rupture of biceps brachii with report of 50 cases. Surgery 25: 370–392, 1949

    PubMed  CAS  Google Scholar 

  • Wickiewicz TL, Roy RR, Powell PL, Edgerton VR. Muscle architecture of the human lower limb. Clinical Orthopedics and Related Research 179: 275–283, 1983

    Article  Google Scholar 

  • Wiktorsson-Moller M, Oberg B, Ekstrand J, Gillquist J. Effects of warming up, massage, and stretching on range of motion and muscle strength in the lower extremity. American Journal of Sports Medicine 11(4): 249–252, 1983

    Article  PubMed  CAS  Google Scholar 

  • Winegrad S, Rubinson TF. Force generation among cells in the relaxing heart. European Journal of Cardiology 7: 63–70, 1978

    PubMed  Google Scholar 

  • Zarins B, Ciullo JV. Acute muscle and tendon injuries in athletes. Clinics in Sports Medicine 2(1): 167–182, 1983

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safran, M.R., Seaber, A.V. & Garrett, W.E. Warm-Up and Muscular Injury Prevention An Update. Sports Medicine 8, 239–249 (1989). https://doi.org/10.2165/00007256-198908040-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-198908040-00004

Keywords

Navigation