Skip to main content
Log in

Nonclassical Aspects of Differential Vitamin D Receptor Activation

Implications for Survival in Patients With Chronic Kidney Disease

  • Current Opinion
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The ‘classical’ effects of vitamin D receptor activator or agonist (VDRA) therapy for the treatment of secondary hyperparathyroidism in patients with chronic kidney disease primarily involves suppressive effects on the parathyroid gland, and regulation of calcium and phosphorus absorption in the intestine and mobilisation in bone. Observational studies in haemodialysis patients report improved cardiovascular and all-cause survival among those receiving VDRA therapy compared with those not on VDRA therapy. Among VDRAs, the selective VDRA paricalcitol has been associated with greater survival than nonselective VDRAs, such as calcitriol (1,25-dihydroxyvitamin D3). The survival benefits of paricalcitol appear to be linked, at least in part, to ‘nonclassical’ actions of VDRAs, possibly through VDRA-mediated modulation of gene expression. In cardiovascular tissues, VDRAs are reported to have beneficial effects such as anti-inflammatory and antithrombotic effects, inhibition of vascular smooth muscle cell proliferation, inhibition of vascular calcification and stiffening, and regression of left ventricular hypertrophy. VDRAs are also reported to negatively regulate the renin-angiotensin system, which plays a key role in hypertension, myocardial infarction and stroke. The selective VDRAs, paricalcitol and maxacalcitol, are associated with direct protective effects on glomerular architecture and antiproteinuric effects in response to renal damage. Paricalcitol regulates several cardiovascular and renal parameters more favourably than nonselective VDRAs. Complex nonclassical effects, which are not clearly understood, possibly contribute to the improved survival seen with VDRAs, especially paricalcitol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anavekar NS, McMurray JJV, Velazquez EJ, et al. Relation between renal dysfunction and cardiovascular outcomes after myocardial infarction. N Engl J Med 2004; 351: 1285–95

    Article  PubMed  CAS  Google Scholar 

  2. Go AS, Chertow GM, Fan D, et al. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004; 351: 1296–305

    Article  PubMed  CAS  Google Scholar 

  3. Slatopolsky E, Brown A, Dusso A. Pathogenesis of secondary hyperparathyroidism. Kidney Int 1999; 56 Suppl. 73: S14–9

    Article  Google Scholar 

  4. Levin A, Bakris GL, Molitch M, et al. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int 2007; 71: 31–8

    Article  PubMed  CAS  Google Scholar 

  5. Rix M, Andreassen H, Eskildsen P, et al. Bone mineral density and biochemical markers of bone turnover in patients with predialysis chronic renal failure. Kidney Int 1999; 56: 1084–93

    Article  PubMed  CAS  Google Scholar 

  6. Martinez I, Saracho R, Montenegro J, et al. A deficit of calcitriol synthesis may not be the initial factor in the pathogenesis of secondary hyperparathyroidism. Nephrol Dial Transplant 1996; 11 Suppl. 3: 22–8

    Article  PubMed  CAS  Google Scholar 

  7. Holick MF. Resurrection of vitamin D deficiency and rickets. J Clin Invest 2006; 116: 2062–72

    Article  PubMed  CAS  Google Scholar 

  8. Naveh-Many T, Marx R, Keshet E, et al. Regulation of 1,25-dihydroxyvitamin D3 receptor gene expression by 1,25-dihydroxyvitamin D3 in the parathyroid in vivo. J Clin Invest 1990; 86: 1968–75

    Article  PubMed  CAS  Google Scholar 

  9. Silver J, Russell J, Sherwood LM. Regulation by vitamin D metabolites of messenger ribonucleic acid for preproparathyroid hormone in isolated bovine parathyroid cells. Proc Natl Acad Sci 1985; 82: 4270–3

    Article  PubMed  CAS  Google Scholar 

  10. Indridason OS, Quarles LD, for the Durham Renal Osteodystrophy Study Group. Comparison of treatments for mild secondary hyperparathyroidism in hemodialysis patients. Kidney Int 2000; 57: 282–92

    Article  PubMed  CAS  Google Scholar 

  11. Levine BS, Song M. Pharmacokinetics and efficacy of pulse oral versus intravenous calcitriol in hemodialysis patients. J Am Soc Nephrol 1996; 7: 488–96

    PubMed  CAS  Google Scholar 

  12. Andress DL. Vitamin D treatment in chronic kidney disease. Semin Dial 2005; 18: 315–21

    Article  PubMed  Google Scholar 

  13. Hudson JQ. Secondary hyperparathyroidism in chronic kidney disease: focus on clinical consequences and vitamin D therapies. Ann Pharmacother 2006; 40: 1584–93

    Article  PubMed  CAS  Google Scholar 

  14. Brancaccio D, Bommer J, Coyne D. Vitamin D receptor activator selectivity in the treatment of secondary hyperparathyroidism: understanding the differences among therapies. Drugs 2007; 67(14): 1981–98

    Article  PubMed  CAS  Google Scholar 

  15. Wu-Wong JR, Nakane M, Traylor L, et al. Cardiovascular disease in chronic kidney failure: is there a role for vitamin D analogs. Curr Opin Invest Drug 2005; 6: 245–54

    CAS  Google Scholar 

  16. Dusso AS, Brown AJ, Slatopolsky E. Vitamin D. Am J Physiol Renal Physiol 2005; 289: F8–28

    Article  PubMed  CAS  Google Scholar 

  17. Issa LL, Leong GM, Sutherland RL, et al. Vitamin D analogue-specific recruitment of vitamin D receptor coactivators. J Bone Miner Res 2002; 17: 879–90

    Article  PubMed  CAS  Google Scholar 

  18. Takeyama K-I, Masuhiro Y, Fuse H, et al. Selective interaction of vitamin D receptor with transcriptional coactivators by a vitamin D analog. Mol Cell Biol 1999; 19: 1049–55

    PubMed  CAS  Google Scholar 

  19. Wu-Wong JR, Nakane M, Ma J, et al. Effects of vitamin D analogs on gene expression profiling in human coronary artery smooth muscle cells. Atherosclerosis 2006; 186: 20–8

    Article  PubMed  CAS  Google Scholar 

  20. Slatopolsky E, Cozzolino M, Finch JL. Differential effects of 19-nor-1,25-(OH)2D3 and 1α-hydroxyvitamin D2 on calcium and phosphorus in normal and uremic rats. Kidney Int 2002; 62: 1277–84

    Article  PubMed  CAS  Google Scholar 

  21. Slatopolsky E, Finch J, Ritter C, et al. Effects of 19-nor-1,25(OH)2D2, a new analogue of calcitriol, on secondary hyperparathyroidism in uremic rats. Am J Kidney Dis 1998; 32 Suppl. 2: S40–7

    Article  PubMed  CAS  Google Scholar 

  22. Nakane M, Ma J, Rose AE, et al. Differential effects of vitamin D analogs on calcium transport. J Steroid Biochem Mol Biol 2007; 103: 84–9

    Article  PubMed  CAS  Google Scholar 

  23. Hirata M, Endo K, Katsumata K, et al. A comparison between 1,25-dihydroxy-22-oxavitamin D(3) and 1,25-dihydroxyvitamin D(3) regarding suppression of parathyroid hormone secretion and calcaemic action. Nephrol Dial Transplant 2002; 17 Suppl. 10: 41–5

    Article  PubMed  CAS  Google Scholar 

  24. Hirata M, Katsumata K, Endo K, et al. In subtotally nephrectomized rats 22-oxacalcitriol suppresses parathyroid hormone with less risk of cardiovascular calcification or deterioration of residual renal function than 1,25(OH)2 vitamin D3. Nephrol Dial Transplant 2003 Sep; 18(9): 1770–6

    Article  PubMed  CAS  Google Scholar 

  25. Akizawa T, Suzuki M, Akiba T, et al. Long-term effect of 1,25-dihydroxy-22-oxavitamin D(3) on secondary hyperparathyroidism in haemodialysis patients: one-year administration study. Nephrol Dial Transplant 2002; 17 Suppl. 10: 28–36

    Article  PubMed  CAS  Google Scholar 

  26. Tamura S, Ueki K, Mashimo K, et al. Comparison of the efficacy of an oral calcitriol pulse or intravenous 22-oxacalcitriol therapies in chronic hemodialysis patients. Clin Exp Nephrol 2005 Sep; 9(3): 238–43

    Article  PubMed  CAS  Google Scholar 

  27. Martin KJ, Gonzalez EA. Vitamin D analogues for the management of secondary hyperparathyroidism. Am J Kidney Dis 2001; 38 Suppl. 5: S34–40

    Article  PubMed  CAS  Google Scholar 

  28. Goltzman D. Use of genetically modified mice to examine skeletal anabolic activity of vitamin D. J Steroid Biochem Mol Biol 2007; 103: 587–91

    Article  PubMed  CAS  Google Scholar 

  29. Nakane M, Fey TA, Dixon DB, et al. Differential effects of vitamin D analogs on bone formation and resorption. J Steroid Biochem Mol Biol 2006; 98: 72–7

    Article  PubMed  CAS  Google Scholar 

  30. Hirata M, Katsumata K, Masaki T, et al. 22-Oxacalcitriol ameliorates high-turnover bone and marked osteitis fibrosa in rats with slowly progressive nephritis. Kidney Int 1999 Dec; 56(6): 2040–7

    Article  PubMed  CAS  Google Scholar 

  31. Joist HE, Ahya SN, Giles K, et al. Differential effects of very high doses of doxercalciferol and paricalcitol on serum phosphorus in hemodialysis patients. Clin Nephrol 2006; 2006: 335–41

    Google Scholar 

  32. Teng M, Wolf M, Ofsthun MN, et al. Activated injectable vitamin D and hemodialysis survival: a historical cohort study. J Am Soc Nephrol 2005; 16: 1115–25

    Article  PubMed  CAS  Google Scholar 

  33. Kalantar-Zadeh K, Kuwae N, Regidor DL, et al. Survival predictability of time-varying indicators of bone disease in maintenance hemodialysis patients. Kidney Int 2006; 70: 771–80

    Article  PubMed  CAS  Google Scholar 

  34. Young EW, Albert JM, Akiba T, et al. Vitamin D therapy and mortality in the Dialysis Outcomes and Practice Patterns Study (DOPPS) [abstract]. J Am Soc Nephrol 2005; 16: 278A

    Google Scholar 

  35. Teng M, Wolf M, Lowrie E, et al. Survival of patients undergoing hemodialysis with paricalcitol or calcitriol therapy. N Engl J Med 2003 Jul 31; 349(5): 446–56

    Article  PubMed  CAS  Google Scholar 

  36. Tentori F, Hunt WC, Stidley CA, et al. Mortality risk among hemodialysis patients receiving different vitamin D analogs. Kidney Int 2006 Nov; 70(10): 1858–65

    Article  PubMed  CAS  Google Scholar 

  37. Wolf M, Shah A, Gutierrez O, et al. Vitamin D levels and early mortality among incident hemodialysis patients. Kidney Int. Epub 2007 Aug 8

  38. USRDS. United States Renal Data System. USRDS 2006 Annual Data Report, 2006 [online]. Available from URL: http://www.usrds.org/adr.htm [Accessed 2007 Sep 6]

  39. Rivard A, Andres V. Vascular smooth muscle cell proliferation in the pathogenesis of atherosclerotic cardiovascular diseases. Histol Histopathol 2000; 15: 557–71

    PubMed  CAS  Google Scholar 

  40. Raggi P, Boulay A, Chasan-Taber S, et al. Cardiac calcification in adult hemodialysis patients: a link between end-stage renal disease and cardiovascular disease? J Am Coll Cardiol 2002; 39: 695–701

    Article  PubMed  Google Scholar 

  41. London GM, Guerin AP, Marchais SJ, et al. Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality. Nephrol Dial Transplant 2003; 18: 1731–40

    Article  PubMed  Google Scholar 

  42. Yildiz A, Memisoglu E, Oflaz H, et al. Atherosclerosis and vascular calcification are independent predictors of left ventricular hypertrophy in chronic haemodialysis patients. Nephrol Dial Transplant 2005; 20: 760–7

    Article  PubMed  Google Scholar 

  43. Wilson PWF, Kauppila LI, O’Donnell C, et al. Abdominal aortic calcific deposits are an important predictor of vascular morbidity and mortality. Circulation 2001; 103: 1529–34

    Article  PubMed  CAS  Google Scholar 

  44. Blacher J, Guerin AP, Pannier B, et al. Arterial calcifications, arterial stiffness, and cardiovascular risk in end-stage renal disease. Hypertension 2001; 38: 938–42

    Article  PubMed  CAS  Google Scholar 

  45. Zimmerman J, Herrlinger S, Pruy A, et al. Inflammation enhances cardiovascular risk and mortality in hemodialysis patients. Kidney Int 1999; 55: 648–58

    Article  Google Scholar 

  46. London GM, Geurin AP, Verbeke FH, et al. Mineral metabolism and arterial functions in end-stage renal disease: potential role of 25-hydroxyvitamin D deficiency. J Am Soc Nephrol 2007; 18: 613–20

    Article  PubMed  CAS  Google Scholar 

  47. Chen NX, Duan D, O’Neill KD, et al. The mechanisms of uremic serum-induced expression of bone matrix proteins in bovine vascular smooth muscle cells. Kidney Int 2006; 70: 1046–53

    Article  PubMed  CAS  Google Scholar 

  48. Chen NX, O’Neill KD, Duan D, et al. Phosphorus and uremic serum up-regulate osteopontin expression in vascular smooth muscle cells. Kidney Int 2002; 62: 1724–31

    Article  PubMed  CAS  Google Scholar 

  49. Jono S, McKee MD, Murry CE, et al. Phosphate regulation of vascular smooth muscle cell calcification. Circ Res 2000; 87: 10–7

    Article  Google Scholar 

  50. Andress DL. Vitamin D in chronic kidney disease: a systemic role for selective vitamin D receptor activation. Kidney Int 2005; 69: 33–43

    Article  Google Scholar 

  51. Giachelli CM. Vascular calcification mechanisms. J Am Soc Nephrol 2004; 15: 2959–64

    Article  PubMed  Google Scholar 

  52. Mitsuhashi T, Morris Jr RC, Ives HE. 1,25-dihydroxyvitamin D3 modulates growth of vascular smooth muscle cells. J Clin Invest 1991; 87: 1889–95

    Article  PubMed  CAS  Google Scholar 

  53. Merke J, Milde P, Lewicka S, et al. Identification and regulation of 1,25-dihydroxyvitamin D3 receptor activity and biosynthesis of 1,25-dihydroxyvitamin D3: studies in cultured bovine aortic endothelial cells and human dermal capillaries. J Clin Invest 1989; 83: 1903–15

    Article  PubMed  CAS  Google Scholar 

  54. Cardus A, Gallego C, Muray S, et al. Differential effect of vitamin D analogues on the proliferation of vascular smooth muscle cells [in Spanish]. Nefrologia 2003; 23 Suppl. 2: 117–21

    PubMed  Google Scholar 

  55. Cardus A, Parisi E, Gallego C, et al. 1,25-Dihydroxyvitamin D3 stimulates vascular smooth muscle cell proliferation through a VEGF-mediated pathway. Kidney Int 2006; 69: 1377–84

    PubMed  CAS  Google Scholar 

  56. Wu-Wong JR, Noonan W, Ma J, et al. Role of phosphorus and vitamin D analogs in the pathogenesis of vascular calcification. J Pharmacol Exp Ther 2006; 318: 90–8

    Article  PubMed  CAS  Google Scholar 

  57. Cardus A, Panizo S, Parisi E, et al. Differential effects of vitamin D analogs on vascular calcification. J Bone Miner Res 2007; 22: 860–6

    Article  PubMed  CAS  Google Scholar 

  58. Wanner C, Metzger T. C-reactive protein a marker for all-cause and cardiovascular mortality in haemodialysis patients. Nephrol Dial Transplant 2002; 17 Suppl. 8: 29–32

    Article  PubMed  CAS  Google Scholar 

  59. Timms PM, Mannan N, Hitman GA, et al. Circulating MMP9, vitamin D and variation in the TIMP-1 response with VDR genotype: mechanisms for inflammatory damage in chronic disorders. Q J Med 2002; 95: 787–96

    Article  CAS  Google Scholar 

  60. Jung HH, Kim S-W, Han H. Inflammation, mineral metabolism and progressive coronary artery calcification in patients on haemodialysis. Nephrol Dial Transplant 2006; 21: 1915–20

    Article  PubMed  CAS  Google Scholar 

  61. Ducy P, Zhang R, Geoffroy V, et al. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 1997; 89: 747–54

    Article  PubMed  CAS  Google Scholar 

  62. Watson KE, Parhami F, Shin V, et al. Fibronectin and collagen I matrixes promote calcification of vascular cells in vitro, whereas collagen IV matrix is inhibitory. Arterioscler Thromb Vasc Biol 1998; 18: 1964–71

    Article  PubMed  CAS  Google Scholar 

  63. Parhami F, Basseri B, Hwang J, et al. High-density lipoprotein regulates calcification of vascular cells. Circ Res 2002; 91: 570–6

    Article  PubMed  CAS  Google Scholar 

  64. Tintut Y, Patel J, Parhami F, et al. Tumor necrosis factor-α promotes in vitro calcification of vascular cells via the cAMP pathway. Circulation 2000; 102: 2636–42

    Article  PubMed  CAS  Google Scholar 

  65. Watson KE, Bostrom K, Ravindranath R, et al. TGF-β1 and 25-hydroxycholesterol stimulate osteoblast-like vascular cells to calcify. J Clin Invest 1994; 93: 2106–13

    Article  PubMed  CAS  Google Scholar 

  66. Bostrom K, Watson KE, Horn S, et al. Bone morphogenetic protein expression in human atherosclerotic lesions. J Clin Invest 1993; 91: 1800–9

    Article  PubMed  CAS  Google Scholar 

  67. Luo G, Ducy P, McKee MD, et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 1997; 386: 78–81

    Article  PubMed  CAS  Google Scholar 

  68. Speer MY, McKee MD, Guldberg RE, et al. Inactivation of the osteopontin gene enhances vascular calcification of matrix gla protein-deficient mice: evidence for osteopontin as an inducible inhibitor of vascular calcification in vivo. J Exp Med 2002; 196: 1047–55

    Article  PubMed  CAS  Google Scholar 

  69. Bellows CG, Reimers SM, Heersche JNM. Expression of mRNAs for type-I collagen, bone sialoprotein, osteocalcin, and osteopontin at different stages of osteoblastic differentiation and their regulation by 1,25 dihydroxyvitamin D3. Cell Tissue Res 1999; 297: 249–59

    Article  PubMed  CAS  Google Scholar 

  70. Drissi H, Pouliot A, Koolloos C, et al. 1,25-(OH)2-vitamin D3 suppresses the bone-related Runx2/Cbfa1 gene promoter. Exp Cell Res 2002; 274: 323–33

    Article  PubMed  CAS  Google Scholar 

  71. Panichi V, De Pietro S, Andreini B, et al. Calcitriol modulates in vivo and in vitro cytokine production: a role for intracellular calcium. Kidney Int 1998; 54: 1463–9

    Article  PubMed  CAS  Google Scholar 

  72. Turk S, Akbulut M, Yildiz A, et al. Comparative effect of oral pulse and intravenous calcitriol treatment in hemodialysis patients: the effect on serum IL-1 and IL-6 levels and bone mineral density. Nephron 2002; 90: 188–94

    Article  PubMed  Google Scholar 

  73. Virdi AS, Cook LJ, Oreffo RO, et al. Modulation of bone morphogenetic protein-2 and bone morphogenetic protein-4 gene expression in osteoblastic lines. Cell Mol Biol 1998; 44: 1237–46

    PubMed  CAS  Google Scholar 

  74. Abe H, Iehara N, Utsunomiya K, et al. A vitamin D analog regulates mesangial cell smooth muscle phenotypes in a transforming growth factor-β type II receptor-mediated manner. J Biol Chem 1999; 274: 20874–8

    Article  PubMed  CAS  Google Scholar 

  75. Fraser JD, Otawara Y, Price PA. 1,25-dihydroxyvitamin D3 stimulates the synthesis of matrix γ-carboxyglutamic acid protein by osteosarcoma cells: mutually exclusive expression of vitamin K-dependent bone proteins by clonal osteoblastic cell lines. J Biol Chem 1988; 263: 911–6

    PubMed  CAS  Google Scholar 

  76. Mizobuchi M, Finch JL, Martin DR, et al. Differential effects of vitamin D receptor activators on vascular calcification in uremic rats. Kidney Int. Epub 2007 Jun 27

  77. Ohsawa M, Koyama T, Yamamoto K, et al. 1α,25-Dihydroxyvitamin D3 and its potent synthetic analogs downregulate tissue factor and upregulate thrombomodulin expression in monocytic cells, counteracting the effects of tumor necrosis factor and oxidized LDL. Circulation 2000; 102: 2867–72

    Article  PubMed  CAS  Google Scholar 

  78. Aihara K, Azuma H, Akaike M, et al. Disruption of nuclear vitamin D receptor gene causes enhanced thrombogenicity in mice. J Biol Chem 2004; 279: 35798–802

    Article  PubMed  CAS  Google Scholar 

  79. Petrie MS, Harrell TE, Schwartz GG, et al. Production of plasminogen activator inhibitor-1 (PAI-1) by endothelial cells: differential responses to calcitriol and paricalcitol. J Thromb Haemost 2004; 2: 2266–7

    Article  PubMed  CAS  Google Scholar 

  80. Nordt TK, Peter K, Ruef J, et al. Plasminogen activator inhibitor type-1 (PAI-1) and its role in cardiovascular disease. Thromb Haemost 1999; 82 Suppl.: 14–8

    PubMed  Google Scholar 

  81. Nitta K, Akiba T, Uchida K, et al. Left ventricular hypertrophy is associated with arterial stiffness and vascular calcification in hemodialysis patients. Hypertens Res 2004; 27: 47–52

    Article  PubMed  Google Scholar 

  82. Patrianakos AP, Parthenakis FI, Karakitsos D, et al. Relation of proximal aorta stiffness to left ventricular diastolic function in patients with end-stage renal disease. J Am Soc Echocardiogr 2007; 20: 314–23

    Article  PubMed  Google Scholar 

  83. Guerin AP, Blacher J, Pannier B, et al. Impact of aortic stiffness attenuation on survival of patients in end-stage renal failure. Circulation 2001; 103: 987–92

    Article  PubMed  CAS  Google Scholar 

  84. London GM, Pannier B, Guerin AP, et al. Alterations of left ventricular hypertrophy in and survival of patients receiving hemodialysis: follow-up of an interventional study. J Am Soc Nephrol 2001; 12: 2759–67

    PubMed  CAS  Google Scholar 

  85. Noonan W, Ma J, Dixon D, et al. Differential effects of vitamin D analogs on aortic calcification and pulse wave velocity in uremic rats [abstract no. SP355]. XLIII European Renal Association-European Dialysis and Transplant Association (ERA-EDTA) Congress; 2006 Jul 15–18; Glasgow

  86. Ayus JC, Mizani MR, Achinger SG, et al. Effects of short daily versus conventional hemodialysis on left ventricular hypertrophy and inflammatory markers: a prospective, controlled study. J Am Soc Nephrol 2005 Sep; 16(9): 2778–88

    Article  PubMed  CAS  Google Scholar 

  87. Thadhani RAJ, Achinger S, Shivalingappa V, et al. Paricalcitol and cardiac structure and function in animals and humans [abstract no. TH-FC155]. J Am Soc Nephrol 2006; 17: 21A

    Article  Google Scholar 

  88. Li YC, Kong J, Wei M, et al. 1,25-Dihydroxyvitamin D3 is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest 2002; 110: 229–38

    PubMed  CAS  Google Scholar 

  89. Xiang W, Kong J, Chen S, et al. Cardiac hypertrophy in vitamin D receptor knockout mice: role of systemic and cardiac renin-angiotensin systems. Am J Physiol Endocrinol Metab 2005; 288: 125–32

    Article  Google Scholar 

  90. Wu-Wong JR, Nakane M, Ruan X, et al. The role of vitamin D receptor in regulating renin [abstract no. SO35]. XLIII European Renal Association-European Dialysis and Transplant Association (ERA-EDTA) Congress; 2005 Jun 4–7; Istanbul

  91. Nakane M, Fey TA, Droz BA, et al. Effect of paricalcitol on renal renin mRNA expression in vitamin D-deficient rats [abstract no. TH-PO288]. American Society of Nephrology (ASN) 38th Renal Week Meeting; 2005 Nov 8–13; Philadelphia (PA)

  92. Pan L, Black TA, Shi Q, et al. Critical roles of a cyclic AMP responsive element and an E-box in regulation of mouse renin gene expression. J Biol Chem 2001; 276: 45530–8

    Article  PubMed  CAS  Google Scholar 

  93. Tian J, Liu Y, Williams LA, et al. Potential role of active vitamin D in retarding the progression of chronic kidney disease. Nephrol Dial Transplant 2007; 22: 321–8

    Article  PubMed  Google Scholar 

  94. Matthias S, Busch R, Merke J, et al. Effects of 1,25(OH)2D3 on compensatory renal growth in the growing rat. Kidney Int 1991; 40: 212–8

    Article  PubMed  CAS  Google Scholar 

  95. Weih M, Orth S, Weinreich T, et al. Inhibition of growth by calcitriol in a proximal tubular cell line (OK). Nephrol Dial Transplant 1994; 9: 1390–4

    PubMed  CAS  Google Scholar 

  96. Weinreich T, Merke J, Schonermark M, et al. Actions of 1,25-dihydroxyvitamin D3 on human mesangial cells. Am J Kidney Dis 1991; 18: 359–66

    PubMed  CAS  Google Scholar 

  97. Schwarz U, Amann K, Orth SR, et al. Effect of 1,25(OH)2 vitamin D3 on glomerulosclerosis in subtotally nephrec-tomized rats. Kidney Int 1998; 53: 1696–705

    Article  PubMed  CAS  Google Scholar 

  98. Tan X, Li YC, Liu Y. Paricalcitol attenuates renal interstitial fibrosis in obstructive nephropathy. J Am Soc Nephrol 2006; 17: 3382–93

    Article  PubMed  CAS  Google Scholar 

  99. Sanai T, Tokumoto M, Hirano T, et al. Different effects of 22-oxacalcitriol and calcitriol on the course of experimental chronic renal failure. J Lab Clin Med 2002; 140: 242–9

    Article  PubMed  CAS  Google Scholar 

  100. Keane WF, Eknoyan G, for the National Kidney Foundation PARADE Committee. Proteinuria, albuminuria, risk, assessment, detection, elimination (PARADE): a position paper of the National Kidney Foundation. Am J Kidney Dis 1999; 33: 1001–10

    Article  Google Scholar 

  101. Foley RN, Parfrey PS, Harnett JD, et al. Hypoalbuminemia, cardiac morbidity, and mortality in end-stage renal disease. J Am Soc Nephrol 1996; 7: 728–36

    PubMed  CAS  Google Scholar 

  102. De Zeeuw D, Remuzzi G, Parving H-H, et al. Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: lessons from RENAAL. Kidney Int 2004; 65: 2309–20

    Article  PubMed  Google Scholar 

  103. Agarwal R, Acharya M, Tian J, et al. Antiproteinuric effect of oral paricalcitol in chronic kidney disease. Kidney Int 2005; 68: 2823–8

    Article  PubMed  CAS  Google Scholar 

  104. Maenpaa PH, Vaisanen S, Jaaskelainen T, et al. Vitamin D(3) analogs (MC 1288, KH 1060, EB 1089, GS 1558, and CB 1093): studies on their mechanism of action. Steroids 2001; 66(3–5): 23–5

    Google Scholar 

  105. Imanishi Y, Inaba M, Seki H, et al. Increased biological potency of hexaflourinated analogs of 1,25-dihydroxyvitamin D3 on bovine parathyroid cells. J Steroid Biochem Mol Biol 1999; 70(4): 243–8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author wishes to express his gratitude Amy J. Yellen-Shaw, PhD, for her editorial assistance. The funding for the editorial assistance was provided by Abbott. Dr Andress has received honoraria for consultancy work for Abbott and Shire.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Andress.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andress, D. Nonclassical Aspects of Differential Vitamin D Receptor Activation. Drugs 67, 1999–2012 (2007). https://doi.org/10.2165/00003495-200767140-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200767140-00003

Keywords

Navigation