Skip to main content
Log in

Comparative Review of the Carbapenems

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The carbapenems are β-lactam antimicrobial agents with an exceptionally broad spectrum of activity. Older carbapenems, such as imipenem, were often susceptible to degradation by the enzyme dehydropeptidase-1 (DHP-1) located in renal tubules and required co-administration with a DHP-1 inhibitor such as cilastatin. Later additions to the class such as meropenem, ertapenem and doripenem demonstrated increased stability to DHP-1 and are administered without a DHP-1 inhibitor. Like all β-lactam antimicrobial agents, carbapenems act by inhibiting bacterial cell wall synthesis by binding to and inactivating penicillin-binding proteins (PBPs). Carbapenems are stable to most β-lactamases including AmpC β-lactamases and extended-spectrum β-lactamases. Resistance to carbapenems develops when bacteria acquire or develop structural changes within their PBPs, when they acquire metallo-β-lactamases that are capable of rapidly degrading carbapenems, or when changes in membrane permeability arise as a result of loss of specific outer membrane porins.

Carbapenems (imipenem, meropenem, doripenem) possess broad-spectrum in vitro activity, which includes activity against many Gram-positive, Gram-negative and anaerobic bacteria; carbapenems lack activity against Enterococcus faecium, methicillin-resistant Staphylococcus aureus and Stenotrophomonas maltophilia. Compared with imipenem, meropenem and doripenem, the spectrum of activity of ertapenem is more limited primarily because it lacks activity against Pseudomonas aeruginosa and Enterococcus spp. Imipenem, meropenem and doripenem have in vivo half lives of approximately 1 hour, while ertapenem has a half-life of approximately 4 hours making it suitable for once-daily administration. As with other β-lactam antimicrobial agents, the most important pharmacodynamic parameter predicting in vivo efficacy is the time that the plasma drug concentration is maintained above the minimum inhibitory concentration (T>MIC).

Imipenem/cilastatin and meropenem have been studied in comparative clinical trials establishing their efficacy in the treatment of a variety of infections including complicated intra-abdominal infections, skin and skin structure infections, community-acquired pneumonia, nosocomial pneumonia, complicated urinary tract infections, meningitis (meropenem only) and febrile neutropenia. The current role for imipenem/cilastatin and meropenem in therapy remains for use in moderate to severe nosocomial and polymicrobial infections. The unique antimicrobial spectrum and pharmacokinetic properties of ertapenem make it more suited to treatment of community-acquired infections and outpatient intravenous antimicrobial therapy than for the treatment of nosocomial infections. Doripenem is a promising new carbapenem with similar properties to those of meropenem, although it appears to have more potent in vitro activity against P. aeruginosa than meropenem. Clinical trials are required to establish the efficacy and safety of doripenem in moderate to severe infections, including nosocomial infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Fig. 1
Table II
Table III
Table IV
Table V
Table VI
Table VII

Similar content being viewed by others

References

  1. Shah PM, Isaacs RD. Ertapenem, the first of a new group of carbapenems. J Antimicrob Chemother 2003 Oct; 52 (4): 538–42

    Article  PubMed  CAS  Google Scholar 

  2. Zhanel GG, Johanson C, Embil JM, et al. Ertapenem: review of a new carbapenem. Expert Rev Anti Infect Ther 2005 Feb; 3 (1): 23–39

    Article  PubMed  CAS  Google Scholar 

  3. Norrby SR. Carbapenems. Med Clin North Am 1995 Jul; 79 (4): 745–59

    PubMed  CAS  Google Scholar 

  4. Edwards SJ, Emmas CE, Campbell HE. Systematic review comparing meropenem with imipenem plus cilastatin in the treatment of severe infections. Curr Med Res Opin 2005 May; 21 (5): 785–94

    Article  PubMed  CAS  Google Scholar 

  5. Livermore DM, Sefton AM, Scott GM. Properties and potential of ertapenem. J Antimicrob Chemother 2003 Sep; 52 (3): 331–44

    Article  PubMed  CAS  Google Scholar 

  6. Mushtaq S, Warner M, Kaniga K, et al. Bactericidal activity of doripenem vs. Pseudomonas aeruginosa [abstract no. F-l 162]. 45th Interscience Conference of Antimicrobial Agents and Chemotherapy; 2005 Dec 16–19; Washington D.C

  7. Kobayashi R, Konomi M, Hasegawa K, et al. In vitro activity of tebipenem, a new oral carbapenem antibiotic, against penicillin-nonsusceptible Streptococcus pneumoniae. Antimicrob Agents Chemother 2005 Mar; 49 (3): 889–94

    Article  PubMed  CAS  Google Scholar 

  8. Schurek KN, Wiebe R, Karlowsky JA, et al. Faropenem: review of a new oral penem. Exp Rev Antiinf Ther 2007 Apr; 5 (2): 185–98

    Article  CAS  Google Scholar 

  9. Hamilton-Miller JM. Chemical and microbiologic aspects of penems, a distinct class of beta-lactams: focus on faropenem. Pharmacotherapy 2003 Nov; 23 (11): 1497–507

    Article  PubMed  CAS  Google Scholar 

  10. Moellering Jr RC, Eliopoulos GM, Sentochnik DE. The carbapenems: new broad spectrum beta-lactam antibiotics. J Antimicrob Chemother 1989 Sep; 24 Suppl.: Al–7

    Article  Google Scholar 

  11. Goa KL, Noble S. Panipenem/betamipron. Drugs 2003; 63 (9): 913–25

    Article  PubMed  CAS  Google Scholar 

  12. Perry CM, Ibbotson T. Biapenem. Drugs 2002; 62 (15): 2221–34

    Article  PubMed  CAS  Google Scholar 

  13. Tsuji M, Ishii Y, Ohno A, et al. In vitro and in vivo antibacterial activities of S-4661, a new carbapenem. Antimicrob Agents Chemother 1998 Jan; 42 (1): 94–9

    PubMed  CAS  Google Scholar 

  14. Jones RN, Huynh HK, Biedenbach DJ. Activities of doripenem (S-4661) against drug-resistant clinical pathogens. Antimicrob Agents Chemother 2004 Aug; 48 (8): 3136–40

    Article  PubMed  CAS  Google Scholar 

  15. Iso Y, Me T, Nishino Y, et al. A novel 1 beta-methyl-carbapenem antibiotic, S-4661. Synthesis and structure-activity relationships of 2-(5-substituted pyrrolidin-3-ylthio)-1 beta-methylcarbapenems. J Antibiot (Tokyo) 1996 Feb; 49 (2): 199–209

    CAS  Google Scholar 

  16. Keating GM, Perry CM. Ertapenem: a review of its use in the treatment of bacterial infections. Drugs 2005 65 (15): 2151–78

    Article  PubMed  CAS  Google Scholar 

  17. Yang Y, Bhachech N, Bush K. Biochemical comparison of imipenem, meropenem and biapenem: permeability, binding to penicillin-binding proteins, and stability to hydrolysis by beta-lactamases. J Antimicrob Chemother 1995 Jan; 35 (1): 75–84

    Article  PubMed  CAS  Google Scholar 

  18. Jackson JJ, Kropp H. beta-Lactam antibiotic-induced release of free endotoxin: in vitro comparison of penicillin-binding protein (PBP) 2-specific imipenem and PBP 3-specific ceftazidime. J Infect Dis 1992 Jun; 165 (6): 1033–41

    Article  PubMed  CAS  Google Scholar 

  19. Jones RN, Sader HS, Fritsche TR. Comparative activity of doripenem and three other carbapenems tested against Gramnegative bacilli with various beta-lactamase resistance mechanisms. Diagn Microbiol Infect Dis 2005 May; 52 (1): 71–4

    Article  PubMed  CAS  Google Scholar 

  20. Fritsche TR, Stilwell MG, Jones RN. Antimicrobial activity of doripenem (S-4661): a global surveillance report (2003). Clin Microbiol Infect 2005 Dec; 11 (12): 974–84

    Article  PubMed  CAS  Google Scholar 

  21. Performance standards for antimicrobial susceptibility testing; fifteenth informational supplement. Clin Lab Standards Inst 2005; 25 (1): M100–S15

    Google Scholar 

  22. Ge Y, Wilder MA, Sahm DF, et al. In vitro antimicrobial activity of doripenem, a new carbapenem. Antimicrob Agents Chemother 2004 Apr; 48 (4): 1384–96

    Article  PubMed  CAS  Google Scholar 

  23. Jacoby GA, Mills DM, Chow N. Role of beta-lactamases and porins in resistance to ertapenem and other beta-lactams in Klebsiella pneumoniae. Antimicrob Agents Chemother 2004 Aug; 48 (8): 3203–6

    Article  PubMed  CAS  Google Scholar 

  24. El Amin N, Giske CG, Jalal S, et al. Carbapenem resistance mechanisms in Pseudomonas aeruginosa: alterations of porin OprD and efflux proteins do not fully explain resistance patterns observed in clinical isolates. APMIS 2005 Mar; 113 (3): 187–96

    Article  PubMed  Google Scholar 

  25. Mushtaq S, Ge Y, Livermore DM. Doripenem versus Pseudomonas aeruginosa in vitro: activity against characterized isolates, mutants, and transconjugants and resistance selection potential. Antimicrob Agents Chemother 2004 Aug; 48 (8): 3086–92

    Article  PubMed  CAS  Google Scholar 

  26. Jones RN, Huynh HK, Biedenbach DJ, et al. Doripenem (S-4661), a novel carbapenem: comparative activity against contemporary pathogens including bactericidal action and preliminary in vitro methods evaluations. J Antimicrob Chemother 2004 Jul; 54 (1): 144–54

    Article  PubMed  CAS  Google Scholar 

  27. Wexler HM, Engel AE, Glass D, et al. In vitro activities of doripenem and comparator agents against 364 anaerobic clinical isolates. Antimicrob Agents Chemother 2005 Oct; 49 (10): 4413–7

    Article  PubMed  CAS  Google Scholar 

  28. Goldstein EJ, Citron DM, Vreni Merriam C, et al. Comparative In vitro activities of ertapenem (MK-0826) against 1,001 anaerobes isolated from human intra-abdominal infections. Antimicrob Agents Chemother 2000 Sep; 44 (9): 2389–94

    Article  PubMed  CAS  Google Scholar 

  29. Nomura S, Nagayama A. In vitro antibacterial activity of S-4661, a new parenteral carbapenem, against urological pathogens isolated from patients with complicated urinary tract infections. J Chemother 2002 Apr; 14 (2): 155–60

    PubMed  CAS  Google Scholar 

  30. Mikamo H, Izumi K, Hua YX, et al. In vitro and in vivo antibacterial activities of a new injectable carbapenem, S-4661, against gynaecological pathogens. J Antimicrob Chemother 2000 Sep; 46 (3): 471–4

    Article  PubMed  CAS  Google Scholar 

  31. Watanabe A, Takahashi H, Kikuchi T, et al. Comparative in vitro activity of S-4661, a new parenteral carbapenem, and other antimicrobial agents against respiratory pathogens. Chemotherapy 2000 May–Jun; 46 (3): 184–7

    Article  PubMed  CAS  Google Scholar 

  32. Pelak BA, Woods GL, Teppler H, et al. Comparative in-vitro activities of ertapenem against aerobic bacterial pathogens isolated from patients with complicated intra-abdominal infections. J Chemother 2002 Jun; 14 (3): 227–33

    PubMed  CAS  Google Scholar 

  33. Friedland I, Mixson LA, Majumdar A, et al. In vitro activity of ertapenem against common clinical isolates in relation to human pharmacokinetics. J Chemother 2002 Oct; 14 (5): 483–91

    PubMed  CAS  Google Scholar 

  34. Pelak BA, Bartizal K, Woods GL, et al. Comparative in vitro activities of ertapenem against aerobic and facultative bacterial pathogens from patients with complicated skin and skin structure infections. Diagn Microbiol Infect Dis 2002 Jun; 43 (2): 129–33

    Article  PubMed  CAS  Google Scholar 

  35. Hicks PS, Pelak B, Woods GL, et al. Comparative in vitro activity of ertapenem against bacterial pathogens isolated from patients with lower respiratory tract infections. Clin Microbiol Infect 2002 Nov; 8 (11): 753–7

    Article  PubMed  CAS  Google Scholar 

  36. Hilliard NJ, Johnson CN, Armstrong SH, et al. In vitro activity of ertapenem (MK-0826) against multi-drug resistant Streptococcus pneumoniae compared with 13 other antimicrobials. Int J Antimicrob Agents 2002 Aug; 20 (2): 136–40

    Article  PubMed  CAS  Google Scholar 

  37. Marchese A, Gualco L, Schito AM, et al. In vitro activity of ertapenem against selected respiratory pathogens. J Antimicrob Chemother 2004 Nov; 54 (5): 944–51

    Article  PubMed  CAS  Google Scholar 

  38. Rolston KV, LeBlanc BM, Streeter H, et al. In vitro activity of ertapenem against bacterial isolates from cancer patients. Diagn Microbiol Infect Dis 2002 Jul; 43 (3): 219–23

    Article  PubMed  CAS  Google Scholar 

  39. Fuchs PC, Barry AL, Brown SD. Comparative in vitro antimicrobial activity of a new carbapenem, E1010, and tentative disc diffusion test interpretative criteria. J Antimicrob Chemother 2001 Jul; 48 (1): 23–8

    Article  PubMed  CAS  Google Scholar 

  40. Fuchs PC, Barry AL, Brown SD. In vitro activities of ertapenem (MK-0826) against clinical bacterial isolates from 11 North American medical centers. Antimicrob Agents Chemother 2001 Jun; 45 (6): 1915–8

    Article  PubMed  CAS  Google Scholar 

  41. Brown SD, Traczewski MM. Comparative in vitro antimicrobial activity of a new carbapenem, doripenem: tentative disc diffusion criteria and quality control. J Antimicrob Chemother 2005 Jun; 55 (6): 944–9

    Article  PubMed  CAS  Google Scholar 

  42. Rhomberg PR, Jones RN, Sader HS, et al. Antimicrobial resistance rates and clonality results from the Meropenem Yearly Susceptibility Test Information Collection (MYSTIC) programme: report of year five (2003). Diagn Microbiol Infect Dis 2004 Aug; 49 (4): 273–81

    Article  PubMed  CAS  Google Scholar 

  43. Livermore DM, Carter MW, Bagel S, et al. In vitro activities of ertapenem (MK-0826) against recent clinical bacteria collected in Europe and Australia. Antimicrob Agents Chemother 2001 Jun; 45 (6): 1860–7

    Article  PubMed  CAS  Google Scholar 

  44. Alhambra A, Cuadros JA, Cacho J, et al. In vitro susceptibility of recent antibiotic-resistant urinary pathogens to ertapenem and 12 other antibiotics. J Antimicrob Chemother 2004 Jun; 53 (6): 1090–4

    Article  PubMed  CAS  Google Scholar 

  45. Rhomberg PR, Jones RN, Sader HS. Results from the Meropenem Yearly Susceptibility Test Information Collection (MYSTIC) Programme: report of the 2001 data from 15 United States medical centres. Int J Antimicrob Agents 2004 Jan; 23 (1): 52–9

    Article  PubMed  CAS  Google Scholar 

  46. Rhomberg PR, Jones RN. Antimicrobial spectrum of activity for meropenem and nine broad spectrum antimicrobials: report from the MYSTIC Program (2002) in North America. Diagn Microbiol Infect Dis 2003 Sep; 47 (1): 365–72

    Article  PubMed  Google Scholar 

  47. Aldridge KE. Ertapenem (MK-0826), a new carbapenem: comparative in vitro activity against clinically significant anaerobes. Diagn Microbiol Infect Dis 2002 Oct; 44 (2): 181–6

    Article  PubMed  CAS  Google Scholar 

  48. Papaparaskevas J, Pantazatou A, Katsandri A, et al. Multicentre survey of the in-vitro activity of seven antimicrobial agents, including ertapenem, against recently isolated Gram-negative anaerobic bacteria in Greece. Clin Microbiol Infect 2005 Oct; 11 (10): 820–4

    Article  PubMed  CAS  Google Scholar 

  49. Goldstein EJ, Citron DM, Merriam CV, et al. General microbiology and in vitro susceptibility of anaerobes isolated from complicated skin and skin-structure infections in patients enrolled in a comparative trial of ertapenem versus piperacillintazobactam. Clin Infect Dis 2002 Sep 1; 35 Suppl. 1: S119–25

    Article  PubMed  CAS  Google Scholar 

  50. Goldstein EJ, Citron DM, Merriam CV, et al. Comparative in vitro activity of ertapenem and 11 other antimicrobial agents against aerobic and anaerobic pathogens isolated from skin and soft tissue animal and human bite wound infections. J Antimicrob Chemother 2001 Nov; 48 (5): 641–51

    Article  PubMed  CAS  Google Scholar 

  51. Roberts SA, Shore KP, Paviour SD, et al. Antimicrobial susceptibility of anaerobic bacteria in New Zealand: 1999-2003. J Antimicrob Chemother 2006 May; 57 (5): 992–8

    Article  PubMed  CAS  Google Scholar 

  52. Behra-Miellet J, Dubreuil L, Calvet L. Evaluation of the in vitro activity of ertapenem and nine other comparator agents against 337 anaerobic bacteria. Int J Antimicrob Agents 2006 Jul; 28 (1): 25–35

    Article  PubMed  CAS  Google Scholar 

  53. Koga T, Abe T, Inoue H, et al. In vitro and in vivo antibacterial activities of CS-023 (RO4908463), a novel parenteral carbapenem. Antimicrob Agents Chemother 2005 Aug; 49 (8): 3239–50

    Article  PubMed  CAS  Google Scholar 

  54. Hoellman DB, Kelly LM, Credito K, et al. In vitro antianaerobic activity of ertapenem (MK-0826) compared to seven other compounds. Antimicrob Agents Chemother 2002 Jan; 46 (1): 220–4

    Article  PubMed  CAS  Google Scholar 

  55. Standards NCCLS. Methods for Dilution Antimicrobial susceptibility tests for bacteria that grow aerobially: MIC testing supplemental tables, M100-S13 (M7). 6th ed. Wayne (PA): National Committee for Clinical Laboratory Standards, 2003

    Google Scholar 

  56. Coves-Orts FJ, Borras-Blasco J, Navarro-Ruiz A, et al. Acute Scizures due to a probable interaction between valproic acid and meropenem. Ann Pharmacother 2005 Mar; 39 (3): 533–7

    Article  PubMed  Google Scholar 

  57. Bonfiglio G, Russo G, Nicoletti G. Recent developments in carbapenems. Expert Opin Investig Drugs 2002 Apr; 11 (4): 529–44

    Article  PubMed  CAS  Google Scholar 

  58. Wexler HM. In vitro activity of ertapenem: review of recent studies. J Antimicrob Chemother 2004 Jun; 53 Suppl. 2: ii11–21

    Article  PubMed  CAS  Google Scholar 

  59. Livermore DM, Oakton KJ, Carter MW, et al. Activity of ertapenem (MK-0826) versus Enterobacteriaceae with potent beta-lactamases. Antimicrob Agents Chemother 2001 Oct; 45 (10): 2831–7

    Article  PubMed  CAS  Google Scholar 

  60. Kohler J, Dorso KL, Young K, et al. In vitro activities of the potent, broad-spectrum carbapenem MK-0826 (L-749,345) against broad-spectrum beta-lactamase-and extended-spectrum beta-lactamase-producing Klebsiella pneumoniae and Escherichia coli clinical isolates. Antimicrob Agents Chemother 1999 May; 43 (5): 1170–6

    PubMed  CAS  Google Scholar 

  61. Coudron PE, Hanson ND, Climo MW. Occurrence of extended-spectrum and AmpC beta-lactamases in bloodstream isolates of Klebsiella pneumoniae: isolates harbor plasmid-mediated FOX-5 and ACT-1 AmpC beta-lactamases. J Clin Microbiol 2003 Feb; 41 (2): 772–7

    Article  PubMed  CAS  Google Scholar 

  62. Goldstein EJ, Citron DM, Merriam CV, et al. Comparative in vitro activities of ertapenem (MK-0826) against 469 less frequently identified anaerobes isolated from human infections. Antimicrob Agents Chemother 2002 Apr; 46 (4): 1136–40

    Article  PubMed  CAS  Google Scholar 

  63. Zhanel GG, Simor AE, Vercaigne L, et al. Imipenem and meropenem comparison of in vitro activity, pharmacokinetics, clinical trials and adverse effects. Can J Infect Dis 1998 Aμg/ July; 9 (4): 215–28

    PubMed  CAS  Google Scholar 

  64. Buckley MM, Brogden RN, Barradell LB, et al. Imipenem/ cilastatin: a reappraisal of its antibacterial activity, pharmacokinetic properties and therapeutic efficacy. Drugs 1992 Sep; 44 (3): 408–44

    Article  PubMed  CAS  Google Scholar 

  65. Moon YS, Chung KC, Gill MA. Pharmacokinetics of meropenem in animals, healthy volunteers, and patients. Clin Infect Dis 1997 Feb; 24 Suppl. 2: S249–55

    Article  PubMed  CAS  Google Scholar 

  66. Majumdar AK, Musson DG, Birk KL, et al. Pharmacokinetics of ertapenem in healthy young volunteers. Antimicrob Agents Chemother 2002 Nov; 46 (11): 3506–11

    Article  PubMed  CAS  Google Scholar 

  67. Doripenem: S 4661. Drugs R D 2003; 4 (6): 363–5

    Article  Google Scholar 

  68. Van Wart S, Bhavnani SM, Phillips L, et al. Population pharmacokinetics of doripenem [abstract no. A-18]. 44th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2004 Oct 30–Nov 2; Washington, DC

  69. Nilsson-Ehle I, Hutchison M, Haworth SJ, et al. Pharmacokinetics of meropenem compared to imipenem-cilastatin in young, healthy males. Eur J Clin Microbiol Infect Dis 1991 Feb; 10 (2): 85–8

    Article  PubMed  CAS  Google Scholar 

  70. Wise R, Donovan IA, Lockley MR, et al. The pharmacokinetics and tissue penetration of imipenem. J Antimicrob Chemother 1986 Dec; 18 Suppl.: E93–101

    Article  Google Scholar 

  71. Hutchison M, Faulkner KL, Turner PJ, et al. A compilation of meropenem tissue distribution data. J Antimicrob Chemother 1995 Jul; 36 Suppl.: A43–56

    Article  Google Scholar 

  72. Laethem T, De Lepeleire I, McCrea J, et al. Tissue penetration by ertapenem, a parenteral carbapenem administered once daily, in suction-induced skin blister fluid in healthy young volunteers. Antimicrob Agents Chemother 2003 Apr; 47 (4): 1439–42

    Article  PubMed  CAS  Google Scholar 

  73. Nix DE, Majumdar AK, DiNubile MJ. Pharmacokinetics and pharmacodynamics of ertapenem: an overview for clinicians. J Antimicrob Chemother 2004 Jun; 53 Suppl. 2: ii23–8

    Article  PubMed  CAS  Google Scholar 

  74. Burkhardt O, Majcher-Peszynska J, Borner K, et al. Penetration of ertapenem into different pulmonary compartments of patients undergoing lung surgery. J Clin Pharmacol 2005 Jun; 45 (6): 659–65

    Article  PubMed  CAS  Google Scholar 

  75. Wittau M, Wagner E, Kaever V, et al. Intraabdominal tissue concentration of ertapenem. J Antimicrob Chemother 2006 Feb; 57 (2): 312–6

    Article  PubMed  CAS  Google Scholar 

  76. Sun HK, Kuti JL, Nicolau DP. Pharmacodynamics of antimicrobials for the empirical treatment of nosocomial pneumonia: a report from the OPTAMA Program. Crit Care Med 2005 Oct; 33 (10): 2222–7

    Article  PubMed  CAS  Google Scholar 

  77. Mouton JW, Touzw DJ, Horrevorts AM, et al. Comparative pharmacokinetics of the carbapenems: clinical implications. Clin Pharmacokinet 2000 Sep; 39 (3): 185–201

    Article  PubMed  CAS  Google Scholar 

  78. Odenholt I, Lowdin E, Cars O. In vitro pharmacodynamic studies of L-749,345 in comparison with imipenem and ceftriaxone against Gram-positive and Gram-negative bacteria. Antimicrob Agents Chemother 1998 Sep; 42 (9): 2365–70

    PubMed  CAS  Google Scholar 

  79. Curran M, Simpson D, Perry C. Ertapenem: a review of its use in the management of bacterial infections. Drugs 2003; 63 (17): 1855–78

    Article  PubMed  CAS  Google Scholar 

  80. Barie PS, Vogel SB, Dellinger EP, et al. A randomized, doubleblind clinical trial comparing cefepime plus metronidazole with imipenem-cilastatin in the treatment of complicated intra-abdominal infections. Cefepime Intra-abdominal Infection Study Group. Arch Surg 1997 Dec; 132 (12): 1294–302

    CAS  Google Scholar 

  81. Mehtar S, Dewar EP, Leaper DJ, et al. A multi-centre study to compare meropenem and cefotaxime and metronidazole in the treatment of hospitalized patients with serious infections. J Antimicrob Chemother 1997 May; 39 (5): 631–8

    Article  PubMed  CAS  Google Scholar 

  82. Solomkin JS, Yellin AE, Rotstein OD, et al. Ertapenem versus piperacillin/tazobactam in the treatment of complicated intraabdominal infections: results of a double-blind, randomized comparative phase III trial. Ann Surg 2003 Feb; 237 (2): 235–45

    PubMed  Google Scholar 

  83. Solomkin JS, Reinhart HH, Dellinger EP, et al. Results of a randomized trial comparing sequential intravenous/oral treatment with ciprofloxacin plus metronidazole to imipenem/cilastatin for intra-abdominal infections. The Intra-Abdominal Infection Study Group. Ann Surg 1996 Mar; 223 (3): 303–15

    CAS  Google Scholar 

  84. Wilson SE. Results of a randomized, multicenter trial of meropenem versus clindamycin/tobramycin for the treatment of intra-abdominal infections. Clin Infect Dis 1997 Feb; 24 Suppl. 2: S197–206

    Article  PubMed  CAS  Google Scholar 

  85. Yellin AE, Hassett JM, Fernandez A, et al. Ertapenem monotherapy versus combination therapy with ceftriaxone plus metronidazole for treatment of complicated intra-abdominal infections in adults. Int J Antimicrob Agents 2002 Sep; 20 (3): 165–73

    Article  PubMed  CAS  Google Scholar 

  86. Berne TV, Yellin AE, Appleman MD, et al. Meropenem versus tobramycin with clindamycin in the antibiotic management of patients with advanced appendicitis. J Am Coll Surg 1996 May; 182 (5): 403–7

    PubMed  CAS  Google Scholar 

  87. Roy S, Higareda I, Angel-Muller E, et al. Ertapenem once a day versus piperacillin-tazobactam every 6 hours for treatment of acute pelvic infections: a prospective, multicenter, randomized, double-blind study. Infect Dis Obstet Gynecol 2003 11 (1): 27–37

    Article  PubMed  CAS  Google Scholar 

  88. Jimenez-Cruz F, Jasovich A, Cajigas J, et al. A prospective, multicenter, randomized, double-blind study comparing ertapenem and ceftriaxone followed by appropriate oral therapy for complicated urinary tract infections in adults. Urology 2002 Jul; 60 (1): 16–22

    Article  PubMed  Google Scholar 

  89. Fabian TC, File TM, Embil JM, et al. Meropenem versus imipenem-cilastatin for the treatment of hospitalized patients with complicated skin and skin structure infections: results of a multicenter, randomized, double-blind comparative study. Surg Infect (Larchmt) 2005; 6 (3): 269–82

    Article  Google Scholar 

  90. Graham DR, Lucasti C, Malafaia O, et al. Ertapenem once daily versus piperacillin-tazobactam 4 times per day for treatment of complicated skin and skin-structure infections in adults: results of a prospective, randomized, double-blind multicenter study. Clin Infect Dis 2002 Jun; 34 (11): 1460–8

    Article  PubMed  CAS  Google Scholar 

  91. Naber KG, Savov O, Salmen HC. Piperacillin 2 g/tazobactam 0.5g is as effective as imipenem 0.5 g/cilastatin 0.5g for the treatment of acute uncomplicated pyelonephritis and complicated urinary tract infections. Int J Antimicrob Agents 2002 Feb; 19 (2): 95–103

    Article  PubMed  CAS  Google Scholar 

  92. Tomera KM, Burdmann EA, Reyna OG, et al. Ertapenem versus ceftriaxone followed by appropriate oral therapy for treatment of complicated urinary tract infections in adults: results of a prospective, randomized, double-blind multicenter study. Antimicrob Agents Chemother 2002 Sep; 46 (9): 2895–900

    Article  PubMed  CAS  Google Scholar 

  93. Lipsky BA, Armstrong DG, Citron DM, et al. Ertapenem versus piperacillin/tazobactam for diabetic foot infections (SIDESTEP): prospective, randomised, controlled, double-blinded, multicentre trial. Lancet 2005 Nov 12; 366 (9498): 1695–703

    Article  PubMed  CAS  Google Scholar 

  94. Ortiz-Ruiz G, Caballero-Lopez J, Friedland IR, et al. A study evaluating the efficacy, safety, and tolerability of ertapenem versus ceftriaxone for the treatment of community-acquired pneumonia in adults. Clin Infect Dis 2002 Apr 15; 34 (8): 1076–83

    Article  PubMed  CAS  Google Scholar 

  95. Vetter N, Cambronero-Hernandez E, Rohlf J, et al. A prospective, randomized, double-blind multicenter comparison of parenteral ertapenem and ceftriaxone for the treatment of hospitalized adults with community-acquired pneumonia. Clin Ther 2002 Nov; 24 (11): 1770–85

    Article  PubMed  CAS  Google Scholar 

  96. Jaccard C, Troillet N, Harbarth S, et al. Prospective randomized comparison of imipenem-cilastatin and piperacillintazobactam in nosocomial pneumonia or peritonitis. Antimicrob Agents Chemother 1998 Nov; 42 (11): 2966–72

    PubMed  CAS  Google Scholar 

  97. Zanetti G, Bally F, Greub G, et al. Cefepime versus imipenemcilastatin for treatment of nosocomial pneumonia in intensive care unit patients: a multicenter, evaluator-blind, prospective, randomized study. Antimicrob Agents Chemother 2003 Nov; 47 (11): 3442–7

    Article  PubMed  CAS  Google Scholar 

  98. Blumer JL, Saiman L, Konstan MW, et al. The efficacy and safety of meropenem and tobramycin vs ceftazidime and tobramycin in the treatment of acute pulmonary exacerbations in patients with cystic fibrosis. Chest 2005 Oct; 128 (4): 2336–46

    Article  PubMed  CAS  Google Scholar 

  99. Biron P, Fuhrmann C, Cure H, et al. Cefepime versus imipenem-cilastatin as empirical monotherapy in 400 febrile patients with short duration neutropenia. CEMIC (Study Group of Infectious Diseases in Cancer). J Antimicrob Chemother 1998 Oct; 42 (4): 511–8

    CAS  Google Scholar 

  100. Feld R, DePauw B, Berman S, et al. Meropenem versus ceftazidime in the treatment of cancer patients with febrile neutropenia: a randomized, double-blind trial. J Clin Oncol 2000 Nov 1; 18 (21): 3690–8

    PubMed  CAS  Google Scholar 

  101. Fleischhack G, Hartmann C, Simon A, et al. Meropenem versus ceftazidime as empirical monotherapy in febrile neutropenia of paediatric patients with cancer. J Antimicrob Chemother 2001 Jun; 47 (6): 841–53

    Article  PubMed  CAS  Google Scholar 

  102. Raad II, Escalante C, Hachem RY, et al. Treatment of febrile neutropenic patients with cancer who require hospitalization: a prospective randomized study comparing imipenem and cefepime. Cancer 2003 Sep; 98 (5): 1039–47

    Article  PubMed  CAS  Google Scholar 

  103. Teppler H, Gesser RM, Friedland IR, et al. Safety and tolerability of ertapenem. J Antimicrob Chemother 2004 Jun; 53 Suppl. 2: ii75–81

    Article  PubMed  CAS  Google Scholar 

  104. Norrby SR, Gildon KM. Safety profile of meropenem: a review of nearly 5,000 patients treated with meropenem. Scand J Infect Dis 1999 31 (1): 3–10

    Article  PubMed  CAS  Google Scholar 

  105. Norrby SR, Newell PA, Faulkner KL, et al. Safety profile of meropenem: international clinical experience based on the first 3125 patients treated with meropenem. J Antimicrob Chemother 1995 Jul; 36 Suppl.: A207–23

    Article  Google Scholar 

  106. Norrby SR. Neurotoxicity of carbapenem antibiotics: consequences for their use in bacterial meningitis. J Antimicrob Chemother 2000 Jan; 45 (1): 5–7

    Article  PubMed  CAS  Google Scholar 

  107. Drusano GL, Standiford HC. Pharmacokinetic profile of imipenem/cilastatin in normal volunteers. Am J Med 1985 Jun; 78 (6A): 47–53

    Article  PubMed  CAS  Google Scholar 

  108. Primaxin® product monograph. Quebec: Merck Frosst Canada & Company, 1998

  109. Bax RP, Bastain W, Featherstone A, et al. The pharmacokinetics of meropenem in volunteers. J Antimicrob Chemother 1989 Sep; 24 Suppl.: A311–20

    Article  Google Scholar 

  110. Nacarkucuk E, Saglam H, Okan M. Meropenem decreases serum level of valproic acid. Pediatr Neurol 2004 Sep; 31 (3): 232–4

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Drs Zhanel and Hoban have received a study grant from Merck. The remaining authors have no conflicts of interest that are directly relevant to the content of this review. No sources of funding were used in the preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George G. Zhanel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhanel, G.G., Wiebe, R., Dilay, L. et al. Comparative Review of the Carbapenems. Drugs 67, 1027–1052 (2007). https://doi.org/10.2165/00003495-200767070-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200767070-00006

Keywords

Navigation