Skip to main content
Log in

Clinical Pharmacokinetics of Thalidomide

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Thalidomide is a racemic glutamic acid derivative approved in the US for erythema nodosum leprosum, a complication of leprosy. In addition, its use in various inflammatory and oncologic conditions is being investigated.

Thalidomide interconverts between the (R)- and (S)-enantiomers in plasma, with protein binding of 55% and 65%, respectively. More than 90% of the absorbed drug is excreted in the urine and faeces within 48 hours. Thalidomide is minimally metabolised by the liver, but is spontaneously hydrolysed into numerous renally excreted products.

After a single oral dose of thalidomide 200mg (as the US-approved capsule formulation) in healthy volunteers, absorption is slow and extensive, resulting in a peak concentration (Cmax) of 1–2 mg/L at 3–4 hours after administration, absorption lag time of 30 minutes, total exposure (AUC) of 18 mg • h/L, apparent elimination half-life of 6 hours and apparent systemic clearance of 10 L/h. Thalidomide pharmacokinetics are best described by a one-compartment model with first-order absorption and elimination. Because of the low solubility of the drug in the gastrointestinal tract, thalidomide exhibits absorption rate-limited pharmacokinetics (the ‘flip-flop’ phenomenon), with its elimination rate being faster than its absorption rate. The apparent elimination half-life of 6 hours therefore represents absorption, not elimination. The ‘true’ apparent volume of distribution was estimated to be 16L by use of the faster elimination-rate half-life.

Multiple doses of thalidomide 200 mg/day over 21 days cause no change in the pharmacokinetics, with a steady-state Cmax (Css max) of 1.2 mg/L. Simulation of 400 and 800 mg/day also shows no accumulation, with Css max of 3.5 and 6.0 mg/L, respectively. Multiple-dose studies in cancer patients show pharmacokinetics comparable with those in healthy populations at similar dosages.

Thalidomide exhibits a dose-proportional increase in AUC at doses from 50 to 400mg. Because of the low solubility of thalidomide, Cmax is less than proportional to dose, and tmax is prolonged with increasing dose.

Age, sex and smoking have no effect on the pharmacokinetics of thalidomide, and the effect of food is minimal. Thalidomide does not alter the pharmacokinetics of oral contraceptives, and is also unlikely to interact with warfarin and grapefruit juice. Since thalidomide is mainly hydrolysed and passively excreted, its pharmacokinetics are not expected to change in patients with impaired liver or kidney function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Table I
Table II
Fig. 3
Fig. 4
Table III
Table IV
Table V
Fig. 5
Table VI
Fig. 6

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Koch H. Thalidomide and congeners as anti-inflammatory agents. Prog Med Chem 1995; 22: 165–242

    Article  Google Scholar 

  2. Somers GF. Pharmacological properties of thalidomide (α-phthalidimo glutarimide), a new sedative hypnotic drug. Br J Pharmacol 1960; 15: 111–6

    CAS  Google Scholar 

  3. Neuhaus G, Ibe K. Survival following suicide attempt with 14 × 100mg of thalidomide. Dis Nerv Syst 1961; 22: 52–3

    CAS  PubMed  Google Scholar 

  4. Mellin GW, Katzenstein M. The saga of thalidomide: neuropathy to embryopathy, with case reports and congenital abnormalities. N Engl J Med 1963; 267: 1184–93

    Article  Google Scholar 

  5. Schumacher H, Blake D, Gurian J, et al. A comparison of the teratogenic activity of thalidomide in rabbits and rats. J Pharmacol Exp Ther 1968; 160: 189–99

    CAS  PubMed  Google Scholar 

  6. Szabo K, Steelman R. Effects of maternal thalidomide treatment on pregnancy, fetal development and mortality of the offspring in random-bred mice. Am J Vet Res 1967; 28: 1823–8

    CAS  PubMed  Google Scholar 

  7. Kelsey F. Thalidomide update: regulatory aspects. Teratology 1988; 38: 221–6

    Article  CAS  PubMed  Google Scholar 

  8. Sheskin J. Thalidomide in the treatment of lepra reaction. Clin Pharmacol Ther 1965; 6: 303–6

    CAS  PubMed  Google Scholar 

  9. Calabrese L, Fleischer A. Thalidomide: current and potential clinical applications. Am J Med 2000; 108: 487–95

    Article  CAS  PubMed  Google Scholar 

  10. Teo S, Resztak K, Scheffler M, et al. Thalidomide in the treatment of leprosy. Microbes Infect 2002; 4: 1193–202

    Article  CAS  PubMed  Google Scholar 

  11. Singhal S, Mehta J, Desikan R, et al. Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 1999; 341: 1565–71

    Article  CAS  PubMed  Google Scholar 

  12. Srinavas S, Guardino A. Randomized phase II trial of high and low dose thalidomide in metastatic renal cell carcinoma [abstract]. Proc Am Soc Clin Oncol 2002; 38: 2403

    Google Scholar 

  13. Marx G, Pavlakis N, McCowatt S, et al. Phase II study of thalidomide in the treatment of recurrent glioblastoma multiforme. J Neurooncol 2001; 54: 31–8

    Article  CAS  PubMed  Google Scholar 

  14. Govindarajan R, Heaton K, Broadwater R, et al. Effect of thalidomide on gastrointestinal toxic effects of irinotecan. Lancet 2000; 356: 566–7

    Article  CAS  PubMed  Google Scholar 

  15. Moreira A, Sampaio E, Zmuidzinas A, et al. Thalidomide exerts its inhibitory action on TNF-α by enhancing mRNA degradation. J Exp Med 1993; 177: 1675–80

    Article  CAS  PubMed  Google Scholar 

  16. D’Amato RJ, Loughnan MS, Flynn E, et al. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A 1994; 91: 4082–5

    Article  PubMed  Google Scholar 

  17. Chen T-L, Vogelsang G, Petty B, et al. Plasma pharmacokinetics and urinary excretion of thalidomide after oral dosing in healthy male volunteers. Drug Metab Dispos 1989; 17: 402–5

    CAS  PubMed  Google Scholar 

  18. Trapnell CB, Donahue SR, Collins JM, et al. Thalidomide does not alter the pharmacokinetics of ethinyl estradiol and norethindrone. Clin Pharmacol Ther 1998; 64: 597–602

    Article  CAS  PubMed  Google Scholar 

  19. Teo SK, Colburn WA, Thomas SD. Single-dose oral pharmacokinetics of three formulations of thalidomide in healthy male volunteers. J Clin Pharmacol 1999; 39: 1162–8

    CAS  PubMed  Google Scholar 

  20. Scheffler M, Colburn W, Kook K, et al. Thalidomide does not alter estrogen-progesterone hormone single-dose pharmacokinetics. Clin Pharmacol Ther 2000; 65: 483–90

    Article  Google Scholar 

  21. Teo S, Scheffler M, Kook K, et al. Effect of a high-fat meal on thalidomide pharmacokinetics and the relative bioavailability of oral formulations in healthy men and women. Biopharm Drug Dispos 2000; 21: 33–40

    Article  CAS  PubMed  Google Scholar 

  22. Teo S, Scheffler M, Kook K, et al. Thalidomide single-dose proportionality assessment in healthy subjects. J Clin Pharmacol 2001; 41: 662–7

    Article  CAS  PubMed  Google Scholar 

  23. Piscitelli SC, Figg WD, Hahn B, et al. Single-dose pharmacokinetics of thalidomide in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 1997; 41: 2797–9

    CAS  PubMed  Google Scholar 

  24. Figg WD, Raje S, Bauer KS, et al. Pharmacokinetics of thalidomide in an elderly prostate cancer population. J Pharm Sci 1999; 88: 121–5

    Article  CAS  PubMed  Google Scholar 

  25. Noormohamed FH, Youle MS, Higgs CJ, et al. Pharmacokinetics and hemodynamic effects of single oral doses of thalidomide in asymptomatic human immunodeficiency virus-infected subjects. AIDS Res Hum Retroviruses 1999; 15: 1047–52

    Article  CAS  PubMed  Google Scholar 

  26. Baidas S, Winer E, Fleming G, et al. Phase II evaluation of thalidomide in patients with metastatic breast cancer. J Clin Oncol 2000; 18: 2710–7

    CAS  PubMed  Google Scholar 

  27. Fine H, Figg W, Jaeckle K, et al. Phase II trial of the antiangiogenic agent thalidomide in patients with recurrent high-grade gliomas. J Clin Oncol 2000; 18: 708–15

    CAS  PubMed  Google Scholar 

  28. Eriksson T, Bjorkman S, Hoglund P. Clinical pharmacology of thalidomide. Eur J Pharmacol 2001; 57: 365–76

    Article  CAS  Google Scholar 

  29. Teo S, Chandula R, Harden J, et al. Sensitive and rapid method for the determination of thalidomide in human plasma and semen using solid-phase extraction and liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 767: 145–51

    Article  CAS  PubMed  Google Scholar 

  30. Eriksson T, Bjorkman S, Fyge A. Determination of thalidomide in plasma and blood by high-performance liquid chromatography: avoiding hydrolytic degradation. J Chromatogr 1992; 582: 211–6

    Article  CAS  PubMed  Google Scholar 

  31. Kenyon B, Browne F, D’Amato R. Effects of thalidomide and related metabolites in a mouse corneal model of neovascularization. Exp Eye Res 1997; 64: 971–8

    Article  CAS  PubMed  Google Scholar 

  32. Reist M, Carrupt P-A, Francotte E, et al. Chiral inversion and hydrolysis of thalidomide mechanisms and catalysis by bases and serum albumin and chiral stability of teratogenic metabolites. Chem Res Toxicol 1998; 11: 1521–8

    Article  CAS  PubMed  Google Scholar 

  33. Hoglund P, Eriksson T, Bjorkman S. A double-blind study of the sedative effects of the thalidomide enantiomers in humans. J Pharmacokinet Biopharm 1998; 26: 363–83

    CAS  PubMed  Google Scholar 

  34. Eriksson T, Bjorkman S, Roth B, et al. Enantiomers of thalidomide: blood distribution and the influence of serum albumin on chiral inversion and hydrolysis. Chirality 1998; 10: 223–8

    Article  CAS  PubMed  Google Scholar 

  35. Eriksson T, Bjorkman S, Roth B, et al. Stereospecific determination, chiral inversion in vitro and pharmacokinetics in humans of the enantiomers of thalidomide. Chirality 1995; 7: 44–52

    Article  CAS  PubMed  Google Scholar 

  36. Wnendt S, Finkam M, Winter W, et al. Enantioselective inhibition of TNF-α release by thalidomide and thalidomide-analogues. Chirality 1996; 8: 390–6

    Article  CAS  PubMed  Google Scholar 

  37. Turk B, Jiang H, Liu J. Binding of thalidomide to α1-acid glycoprotein may be involved in its inhibition of tumor necrosis factor α production. Proc Natl Acad Sci U S A 1996; 93: 7552–6

    Article  CAS  PubMed  Google Scholar 

  38. Iyer C, Languillon J, Ramanujan K, et al. WHO coordinated short-term double-blind trial with thalidomide in the treatment of acute lepra reactions in male lepromatous patients. Bull World Health Organ 1971; 45: 719–32

    CAS  PubMed  Google Scholar 

  39. Ehrenpreis E, Kane S, Cohen L, et al. Thalidomide therapy for patients with refractory Crohn’s disease: an open label trial. Gastroenterology 1999; 117: 1271–7

    Article  CAS  PubMed  Google Scholar 

  40. Braun A, Harding F, Weinreb S. Teratogen metabolism of thalidomide activation is mediated by cytochrome P-450. Toxicol Appl Pharmacol 1986; 82: 175–9

    Article  CAS  PubMed  Google Scholar 

  41. Tsambaos D, Bolsen K, Georgiou S, et al. Effects of oral thalidomide on rat liver and skin microsomal P450 isozyme activities on urinary porphyrin excretion: interaction with oral hexachlorobenzene. Arch Dermatol Res 1994; 286: 347H–9H

    Article  Google Scholar 

  42. Teo S, Trigg N, Shaw M, et al. Subchronic toxicity of thalidomide in rodents after 13 weeks of oral administration. Int J Toxicol 1999; 18: 337–52

    Article  CAS  Google Scholar 

  43. Knoche B, Blaschke G. Stereoselectivity of the in vitro metabolism of thalidomide. Chirality 1994; 6: 221–4

    Article  CAS  Google Scholar 

  44. Ando Y, Fuse E, Figg W. Thalidomide metabolism by the CYP2C family. Clin Cancer Res 2002, 73

  45. Eriksson T, Bjorkman S, Roth B, et al. Hydroxylated metabolites of thalidomide: formation in vitro and in vivo in man. J Pharm Pharmacol 1998; 50: 1409–16

    Article  CAS  PubMed  Google Scholar 

  46. Teo S, Sabourin P, O’Brien K, et al. Metabolism of thalidomide in human microsomes, cloned human cytochrome P-450 isozymes and Hansen’s disease patients. J Biochem Mol Toxicol 2000; 14: 140–7

    Article  CAS  PubMed  Google Scholar 

  47. Schumacher H, Smith R, Williams R. The metabolism of thalidomide: the fate of thalidomide and some of its hydrolysis products in various species. Br J Pharmacol 1965; 25: 338–51

    CAS  Google Scholar 

  48. Schumacher H, Blake D, Gillette G. Disposition of thalidomide in rabbits and rats. J Pharmacol Exp Ther 1968; 160: 201–11

    CAS  PubMed  Google Scholar 

  49. Schumacher H, Wilson J, Terapane J, et al. Thalidomide: disposition in rhesus monkeys and studies of its hydrolysis in tissues of this and other species. J Pharmacol Exp Ther 1970; 173: 265–9

    CAS  PubMed  Google Scholar 

  50. Eriksson T, Bjorkman S, Roth B, et al. Intravenous formulations of the enantiomers of thalidomide: pharmacokinetic and initial pharmacodynamic characterization in man. J Pharm Pharmacol 2000; 52: 807–17

    Article  CAS  PubMed  Google Scholar 

  51. Francis J, Biggerstaff J, Amirkhorsravi A. Hemostatis and malignancy. Semin Thromb Hemost 1998; 24: 93–109

    Article  CAS  PubMed  Google Scholar 

  52. Zangari M, Anaissie E, Barlogie B, et al. Increased risk of deep-vein thrombosis with multiple myeloma receiving thalidomide and chemotherapy. Blood 2001; 98: 1614–5

    Article  CAS  PubMed  Google Scholar 

  53. Teo S, Harden J, Burke A, et al. Thalidomide is distributed into human semen after oral dosing. Drug Metab Dispos 2001; 29: 1355–7

    CAS  PubMed  Google Scholar 

  54. Zeldis J, Williams B, Thomas S, et al. STEPS: a comprehensive program for controlling and monitoring access to thalidomide. Clin Ther 1999; 21: 319–30

    Article  CAS  PubMed  Google Scholar 

  55. Rosenfeld W, Doose D, Walker S, et al. Effect of topiramate on the pharmacokinetics of an oral contraceptive containing norethindrone and ethinyl estradiol in patients with epilepsy. Epilepsia 1997; 38: 317–23

    Article  CAS  PubMed  Google Scholar 

  56. Saano V, Glue P, Banfield C, et al. Effects of felbamate on the pharmacokinetics of a low-dose combination oral contraceptive. Clin Pharmacol Ther 1995; 58: 523–32

    Article  CAS  PubMed  Google Scholar 

  57. Shenfield G. Oral contraceptives: are drug interactions of clinical significance?. Drug Saf 1993; 9(1): 21–37

    Article  CAS  PubMed  Google Scholar 

  58. Guengerich F. Inhibition of oral contraceptives steroid-metabolizing enzymes by steroids and drugs. Am J Obstet Gynecol 1990; 163: 2159–63

    CAS  PubMed  Google Scholar 

  59. Lacy C, Armstrong L, Ingrim N, Lance L, editors. Drug information handbook. Cleveland: Lexi-Comp Inc, 1997–98

  60. Barlogie B, Zangari M, Spencer T, et al. Thalidomide in the management of multiple myeloma. Semin Hematol 2001; 38: 250–9

    Article  CAS  PubMed  Google Scholar 

  61. Kosa T, Maruyama T, Otagiri M. Species difference of serum albumins: I. drug binding sites. Pharm Res 1997; 14: 1607–13

    Article  CAS  PubMed  Google Scholar 

  62. Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994; 270: 414–23

    CAS  PubMed  Google Scholar 

  63. Lown K, Bailey D, Fontana R, et al. Grapefruit increases felodipine oral availability in humans by decreasing intestinal CYP3A protein expression. J Clin Invest 1997; 99: 2545–53

    Article  CAS  PubMed  Google Scholar 

  64. Hess C, Hunziker T, Kupfer A, et al. Thalidomide-induced peripheral neuropathy: a prospective clinical, neurophysiological and pharmacogenetic evaluation. J Neurol 1986; 233: 83–9

    Article  CAS  PubMed  Google Scholar 

  65. Eriksson T, Hoglund P, Turesson I, et al. Pharmacokinetics of thalidomide in patients with impaired renal function and while on and off dialysis. J Pharm Pharmacol 2003; 55: 1701–6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This review is dedicated to the memory of Wayne Colburn PhD who passed away on February 2, 2003. Wayne will be remembered for his leadership and passion in advancing the profession of Clinical Pharmacology and for his enormous contribution to this discipline. This review was sponsored by Celgene Corporation. Doctors Teo, Stirling, Jaworsky, Scheffler, Thomas and Laskin are employees of Celgene Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve K. Teo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teo, S.K., Colburn, W.A., Tracewell, W.G. et al. Clinical Pharmacokinetics of Thalidomide. Clin Pharmacokinet 43, 311–327 (2004). https://doi.org/10.2165/00003088-200443050-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200443050-00004

Keywords

Navigation