Skip to main content
Log in

Management of Secondary Hyperparathyroidism in the Elderly Patient with Chronic Kidney Disease

  • Review Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Patients with chronic kidney disease (CKD) are generally affected by secondary hyperparathyroidism (SHPT). High phosphate, low calcium and vitamin D deficiency represent the classical ‘triad’ involved into the pathogenesis of SHPT in renal insufficiency, in which downregulation of the parathyroid vitamin D receptor and calcium-sensing receptor represents a critical step. Recently, new studies indicate that fibroblast growth factor 23 may play a central role in the regulation of phosphate-vitamin D metabolism in patients with CKD.

These new insights into the pathogenesis of SHPT will possibly improve the treatment of this condition in patients with CKD. The ‘modern’ treatment of SHPT in CKD patients consists of free-calcium and aluminium phosphate binders, vitamin D receptor activators and calcimimetics. However, calcium- and aluminium-based phosphate binders and calcitriol are therapeutic tools that are not without complications, including increasing the risk of cardiovascular calcification in patients with CKD. This review summarizes the current understanding and evidence supporting strategies for SHPT treatment in CKD patients, with particular focus on the elderly, although specific guidelines for control of this disorder in this age group are lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jadoul M, Albert JM, Akiba T, et al. Incidence and risk factors for hip or other bone fractures among hemodialysis patients in the Dialysis Outcomes and Practice Pattern Study. Kidney Int 2006; 70: 1358–66

    Article  PubMed  CAS  Google Scholar 

  2. Ganesh SK, Stack AG, Levin NW, et al. Association of elevated serum PO4, CaPO4 product, and parathyroid hormone levels with cardiac mortality risk in chronic hemodialysis patients. J Am Soc Nephrol 2001; 12: 2131–8

    PubMed  CAS  Google Scholar 

  3. Block GA, Klassen PS, Lazarus JM, et al. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis patients. J Am Soc Nephrol 2004; 15: 2208–18

    Article  PubMed  CAS  Google Scholar 

  4. Young EW, Albert JM, Satayathum S, et al. Predictors and consequences of altered mineral metabolism: the Dialysis Outcomes and Practice Pattern Study. Kidney Int 2005; 67: 1179–87

    Article  PubMed  CAS  Google Scholar 

  5. Cozzolino M, Galassi A, Gallieni M, et al. Pathogenesis and treatment of secondary hyperparathyroidism in dialysis patients: the role of paricalcitol. Curr Vasc Pharmacol 2008 Apr; 6(2): 148–53

    Article  PubMed  CAS  Google Scholar 

  6. Emmett M. What does serum fibroblast growth factor 23 do in hemodialysis patients? Kidney Int 2008 Jan; 73(1): 3–5

    Article  PubMed  CAS  Google Scholar 

  7. Gutierrez OM, Mannstadt M, Isakova T, et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 2008; 359: 584–92

    Article  PubMed  CAS  Google Scholar 

  8. Heaney RP. Thinking straight about calcium. N Engl J Med 1993; 328: 503–5

    Article  PubMed  CAS  Google Scholar 

  9. National Kidney Foundation. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis 2003; 42Suppl. 3: 63–200

    Google Scholar 

  10. Moe S, Drüeke T, Cunningham J, et al. Kidney Disease: Improving Global Outcomes (KDIGO) definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 2006 Jun; 69(11): 1945–53

    Article  PubMed  CAS  Google Scholar 

  11. Cozzolino M, Galassi A, Pasho S, et al. Preventive measures and new pharmacological approaches of calcium and phosphate disorders. Contrib Nephrol 2008; 161: 234–9

    Article  PubMed  Google Scholar 

  12. Bro S, Olgaard K. Effects of excess PTH on nonclassical target organs. Am J Kidney Dis 1997; 30: 606–20

    Article  PubMed  CAS  Google Scholar 

  13. Elder G. Pathophysiology and recent advances in the management of renal osteodystrophy. J Bone Miner Res 2002; 17: 2094–105

    Article  PubMed  CAS  Google Scholar 

  14. London GM. Cardiovascular calcifications in uremic patients: clinical impact on cardiovascular function. J Am Soc Nephrol 2003; 14: S305–9

    Article  PubMed  Google Scholar 

  15. Cozzolino M, Brancaccio D, Gallieni M, et al. Pathogenesis of vascular calcification in chronic kidney disease. Kidney Int 2005; 68(2): 429–36

    Article  PubMed  CAS  Google Scholar 

  16. Cozzolino M, Mazzaferro S, Pugliese F, et al. Vascular calcification and uremia: what do we know? Am J Nephrol 2008; 28: 339–46

    Article  PubMed  Google Scholar 

  17. Lips P, Wiersinga A, van Ginkel FC, et al. The effect of vitamin D supplementation on vitamin D status and parathyroid function in elderly subjects. J Clin Endocrinol Metab 1988; 67: 644–50

    Article  PubMed  CAS  Google Scholar 

  18. Lips P. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocrine Rev 2001; 22(4): 477–501

    Article  CAS  Google Scholar 

  19. Bruce DG, St John A, Nicklason F, et al. Secondary hyperparathyroidism in patients from Western Australia with hip fracture: relationship to type of hip fracture, renal function, and vitamin D deficiency. J Am Geriatr Soc 1999; 47: 354–9

    PubMed  CAS  Google Scholar 

  20. Woitge HW, Scheidt-Nave C, Kissling C, et al. Seasonal variation of biochemical indexes of bone turnover: results of a population-based study. J Clin Endocrinol Metab 1998; 83: 68–75

    Article  PubMed  CAS  Google Scholar 

  21. Demiaux B, Arlot ME, Chapuy MC, et al. Serum osteocalcin is increased in patients with osteomalacia: correlations with biochemical and histomorphometric findings. J Clin Endocrinol Metab 1992; 74: 1146–51

    Article  PubMed  CAS  Google Scholar 

  22. Sahota O, Masud T, San P, et al. Vitamin D insufficiency increases bone turnover markers and enhances bone loss at the hip in patients with established vertebral osteoporosis. Clin Endocrinol (Oxf) 1999; 51: 217–21

    Article  CAS  Google Scholar 

  23. Khosla S, Atkinson EJ, Melton III LJ, et al. Effects of age and estrogen status on serum parathyroid hormone levels and biochemical markers of bone turnover in women: a population-based study. J Clin Endocrinol Metab 1997; 82: 1522–7

    Article  PubMed  CAS  Google Scholar 

  24. Ooms ME, Lips P, Roos JC, et al. Vitamin D status and sex hormone binding globulin: determinants of bone turnover and bone mineral density in elderly women. J Bone Miner Res 1995; 10: 1177–84

    Article  PubMed  CAS  Google Scholar 

  25. Cozzolino M, Brancaccio D, Gallieni M, et al. Pathogenesis of parathyroid hyperplasia in renal failure. J Nephrol 2005; 18(1): 5–8

    PubMed  CAS  Google Scholar 

  26. Szabo A, Merke J, Beier E, et al. 1,25(OH)2vitamin D3 inhibits parathyroid cell proliferation in experimental uremia. Kidney Int 1989; 35: 1049–56

    Article  PubMed  CAS  Google Scholar 

  27. Healy KD, Vanhooke JL, Prahl JM, et al. Parathyroid hormone decreases renal vitamin D receptor expression in vivo. Proc Natl Acad Sci U S A 2005; 102: 4724–8

    Article  PubMed  CAS  Google Scholar 

  28. Brown AJ, Zhong M, Finch J, et al. The roles of calcium and 1,25-dihydroxyvitamin D3 in the regulation of vitamin D receptor expression by rat parathyroid glands. Endocrinology 1995; 136: 1419–25

    Article  PubMed  CAS  Google Scholar 

  29. Brown AJ, Zhong M, Finch J, et al. Rat calcium-sensing receptor is regulated by vitamin D but not by calcium. Am J Physiol 1996; 270: F454–60

    PubMed  CAS  Google Scholar 

  30. Slatopolsky E, Weerts C, Thielan J, et al. Marked suppression of secondary hyperparathyroidism by intravenous administration of 1,25-dihydroxy-cholecalciferol in uremic patients. J Clin Invest 1984; 74(6): 2136–43

    Article  PubMed  CAS  Google Scholar 

  31. Sjoden G, Lindgren JU, DeLuca HF. Antirachitic activity of 1 alpha-hydroxyergocholecalciferol and 1 alpha-hydroxycholecalciferol in rats. J Nutr 1984; 114: 2043–204

    PubMed  CAS  Google Scholar 

  32. Slatopolsky E, Finch J, Ritter C, et al. A new analog of calcitriol, 19-nor-1,25(OH)2D2, suppresses parathyroid hormone secretion in uremic rats in the absence of hypercalcemia. Am J Kidney Dis 1995; 26: 852–60

    Article  PubMed  CAS  Google Scholar 

  33. Brown AJ, Finch J, Grieff M, et al. The mechanism for the disparate actions of calcitriol and 22-oxacalcitriol in the intestine. Endocrinology 1993; 133: 1158–64

    Article  PubMed  CAS  Google Scholar 

  34. Gonzalez EA, Sachdeva A, Oliver DA, et al. Vitamin D insufficiency and deficiency in chronic kidney disease: a single center observational study. Am J Nephrol 2004; 24: 503–10

    Article  PubMed  CAS  Google Scholar 

  35. Levin A, Bakris GL, Molitch M, et al. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int 2007; 71(1): 31–8

    Article  PubMed  CAS  Google Scholar 

  36. Rix M, Andreassen H, Eskildsen P, et al. Bone mineral density and biochemical markers of bone turnover in patients with pre-dialysis chronic renal failure. Kidney Int 1999; 56: 1084–93

    Article  PubMed  CAS  Google Scholar 

  37. Rix M, Eskildsen P, Olgaard K. Effect of 18 months of treatment with alfacalcidol on bone in patients with mild to moderate chronic renal failure. Nephrol Dial Transplant 2004 Apr; 19(4): 870–6

    Article  PubMed  CAS  Google Scholar 

  38. Slatopolsky E, Cozzolino M, Finch JL. Differential effects of 19-nor-1,25-(OH)2D2 and 1alpha-hydroxyvitamin D2 on calcium and phosphorus in normal and uremic rats. Kidney Int 2002; 62(4): 1277–84

    Article  PubMed  CAS  Google Scholar 

  39. Takahashi F, Finch JL, Denda M, et al. A new analog of 1,25-(OH)2D3, 19-nor-1,25-(OH)2D2, suppresses serum PTH and parathyroid gland growth in uremic rats without elevation of intestinal vitamin D receptor content. Am J Kidney Dis 1997; 30: 105–12

    Article  PubMed  CAS  Google Scholar 

  40. Mizobuchi M, Finch JL, Martin DR, et al. Differential effects of vitamin D receptor activators on vascular calcification in uremic rats. Kidney Int 2007; 72(6): 709–15

    Article  PubMed  CAS  Google Scholar 

  41. Cardus A, Panizo S, Parisi E, et al. Differential effects of vitamin D analogs on vascular calcification. J Bone Miner Res 2007 Jun; 22(6): 860–6

    Article  PubMed  CAS  Google Scholar 

  42. Martin K, Gonzalez EA, Gellens M, et al. 19-Nor-1-alpha-25-dihydroxyvitamin D2 (paricalcitol) safely and effectively reduces the levels of intact parathyroid hormone in patients on hemodialysis. J Am Soc Nephrol 1998; 9(8): 1427–32

    PubMed  CAS  Google Scholar 

  43. Sprague SM, Llach F, Amdahl M, et al. Paricalcitol versus calcitriol in the treatment of secondary hyperparathyroidism. Kidney Int 2003; 63(4): 1483–90

    Article  PubMed  CAS  Google Scholar 

  44. Teng M, Wolf M, Lowrie E, et al. Survival of patients undergoing hemodialysis with paricalcitol or calcitriol. N Engl J Med 2003; 349: 446–56

    Article  PubMed  CAS  Google Scholar 

  45. Dobrez DG, Mathes A, Amdahl M, et al. Paricalcitol-treated patients experience improved hospitalization outcomes compared with calcitriol-treated patients in real-world clinical settings. Nephrol Dial Transplant 2004; 19(5): 1174–81

    Article  PubMed  CAS  Google Scholar 

  46. Palmer SC, McGregor DO, Macaskill P, et al. Metaanalysis: vitamin D compounds in chronic kidney disease. Ann Intern Med 2007 Dec 18; 147(12): 840–53

    PubMed  Google Scholar 

  47. Hergesell O, Ritz E. Phosphate binders in uraemia: pharmacodynamics, pharmacoeconomics, pharmacoethics. Nephrol Dial Transplant 2002; 17: 14–7

    Article  PubMed  CAS  Google Scholar 

  48. Gallieni M, Cozzolino M, Carpani P, et al. Sevelamer reduces calcium load and maintains a low calcium-phosphorus ion product in dialysis patients. J Nephrol 2001; 14: 176–83

    PubMed  CAS  Google Scholar 

  49. Posner BM, Borman CL, Morgan JL, et al. The validity of a telephone administered 24-hour recall methodology. Am J Clin Nutr 1982; 36: 546–53

    PubMed  CAS  Google Scholar 

  50. Lorenzo V, Martín M, Rufino M, et al. Protein intake, control of serum phosphorus, and relatively low levels of parathyroid hormone in elderly hemodialysis patients. Am J Kidney Dis 2001; 37: 1260–6

    Article  PubMed  CAS  Google Scholar 

  51. Lorenzo Sellares V, Torres Ramírez A. Management of hyper-phosphataemia in dialysis patients: role of phosphate binders in the elderly. Drugs Aging 2004; 21: 153–65

    Article  PubMed  Google Scholar 

  52. Joy MS, Finn WF, LAM-302 Study Group. Randomized, double-blind, placebo-controlled, dose-titration, phase III study assessing the efficacy and tolerability of lanthanum carbonate: a new phosphate binder for the treatment of hyperphosphatemia. Am J Kidney Dis 2003; 42: 96–107

    Article  PubMed  CAS  Google Scholar 

  53. Mehrotra R, Martin KJ, Fishbane S, et al. Higher strength lanthanum carbonate provides serum phosphorus control with a low tablet burden and is preferred by patients and physicians: a multicenter study. Clin J Am Soc Nephrol 2008; 3: 1437–45

    Article  PubMed  Google Scholar 

  54. Ben-Dov IZ, Pappo O, Sklair-Levy M, et al. Lanthanum carbonate decreases PTH gene expression with no hepatotoxicity in uraemic rats. Nephrol Dial Transplant 2007 Feb; 22(2): 362–8

    Article  PubMed  CAS  Google Scholar 

  55. Spasovski GB, Sikole A, Gelev S, et al. Evolution of bone and plasma concentration of lanthanum in dialysis patients before, during 1 year of treatment with lanthanum carbonate and after 2 years of follow-up. Nephrol Dial Transplant. 2006 Aug; 21(8): 2217–24

    Article  PubMed  CAS  Google Scholar 

  56. Hutchison AJ, Barnett ME, Krause R, et al. Long-term efficacy and safety profile of lanthanum carbonate: results for up to 6 years of treatment. Nephron Clin Pract 2008; 110: c15–23

    Article  PubMed  CAS  Google Scholar 

  57. Chertow GM, Burke SK, Raggi P; Treat to Goal Working Group. Sevelamer attenuates the progression of coronary and aortic calcification in hemodialysis patients. Kidney Int 2002; 62: 245–52

    Article  PubMed  CAS  Google Scholar 

  58. Block GA, Raggi P, Bellasi A, et al. Mortality effect of coronary calcification and phosphate binder choice in incident hemodialysis patients. Kidney Int 2007; 71: 438–41

    Article  PubMed  CAS  Google Scholar 

  59. Suki WN, Zabaneh R, Cangiano JL, et al. Effects of sevelamer and calcium-based phosphate binders on mortality in hemodialysis patients. Kidney Int 2007; 72: 1130–7

    Article  PubMed  CAS  Google Scholar 

  60. Ketteler M, Rix M, Fan S, et al. Efficacy and tolerability of sevelamer carbonate in hyperphosphatemic patients who have chronic kidney disease and are not on dialysis. Clin J Am Soc Nephrol 2008; 3: 1125–30

    Article  PubMed  CAS  Google Scholar 

  61. Delmez J, Block G, Robertson J, et al. A randomized, double-blind, crossover design study of sevelamer hydrochloride and sevelamer carbonate in patients on hemodialysis. Clin Nephrol 2007; 68: 386–91

    PubMed  CAS  Google Scholar 

  62. Gallieni M, Cozzolino M, Brancaccio D. Transient decrease of serum bicarbonate levels with sevelamer hydrochloride as the phosphate binder. Kidney Int 2000; 57: 1776–7

    Article  PubMed  CAS  Google Scholar 

  63. Qunibi W, Moustafa M, Muenz LR, et al. A 1-year randomized trial of calcium acetate versus sevelamer on progression of coronary artery calcification in hemodialysis patients with comparable lipid control: the Calcium Acetate Renagel Evaluation-2 (CARE-2) study. Am J Kidney Dis 2008; 51: 952–65

    Article  PubMed  CAS  Google Scholar 

  64. Brown EM. Calcium receptor and regulation of parathyroid hormone secretion. Rev Endocr Metab Disord 2000; 1: 307–15

    Article  PubMed  CAS  Google Scholar 

  65. Block GA, Martin KJ, de Francisco ALM. Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. N Engl J Med 2004; 350: 1516–25

    Article  PubMed  CAS  Google Scholar 

  66. Valle C, Rodriguez M, Santamaría R, et al. Cinacalcet reduces the set point of the PTH-calcium curve. J Am Soc Nephrol 2008; 19: 2430–6

    Article  PubMed  CAS  Google Scholar 

  67. Messa P, Macério F, Yaqoob M, et al. The OPTIMA study: assessing a new cinacalcet (Sensipar/Mimpara) treatment algorithm for secondary hyperparathyroidism. Clin J Am Soc Nephrol 2008; 3: 36–45

    Article  PubMed  CAS  Google Scholar 

  68. Tominaga Y, Uchida K, Haba T, et al. More than 1000 cases of total parathyroidectomy with forearm autograft for renal hyperparathyroidism. Am J Kidney Dis 2001; 38Suppl. 1: S166–71

    Google Scholar 

  69. Kakuta T, Suzuki Y, Tadaki F, et al. Long-term prognosis of parathyroid function for chronic dialysis patients after minimally invasive radioguided parathyroidectomy (MIRP). Nephrol Dial Transplant 2003; 18Suppl. 3: 71–5

    Google Scholar 

  70. Kitaoka M, Fukagawa M, Ogata E, et al. Reduction of functioning parathyroid cell mass by ethanol injection in chronic dialysis patients. Kidney Int 1994; 46: 1110–7

    Article  PubMed  CAS  Google Scholar 

  71. Shiizaki K, Hatamura I, Negi S, et al. Percutaneous maxacalcitol injection therapy regresses hyperplasia of parathyroid and induces apoptosis in uremia. Kidney Int 2003; 64: 992–1003

    Article  PubMed  CAS  Google Scholar 

  72. Koiwa F, Kakuta T, Tanaka R, et al. Efficacy of percutaneous ethanol injection therapy (PEIT) is related to the number of parathyroid glands in haemodialysis patients with secondary hyperparathyroidism. Nephrol Dial Transplant 2007; 22: 522–8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. Mario Cozzolino has received honoraria from Shire, Abbott, Amgen, Genzyme and Roche. Maurizio Gallieni has received honoraria from Genzyme and Amgen. Diego Brancaccio has received honoraria from Abbott, Shire and Amgen. The other authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Cozzolino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cozzolino, M., Gallieni, M., Pasho, S. et al. Management of Secondary Hyperparathyroidism in the Elderly Patient with Chronic Kidney Disease. Drugs Aging 26, 457–468 (2009). https://doi.org/10.2165/00002512-200926060-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-200926060-00002

Keywords

Navigation