Skip to main content
Log in

Risk of Fractures with Glitazones

A Critical Review of the Evidence to Date

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

The insulin-sensitizing thiazolidinediones (commonly known as glitazones) are an important and widely prescribed class of antidiabetic agents. Glitazones exert their action through activation of proliferator-activated receptor gamma (PPAR-γ) nuclear transcription factor and are effective drugs to achieve glycaemic control in patients with type 2 diabetes mellitus. Recent rapidly growing evidence suggests that glitazone use is associated with accelerated bone loss and an increased risk of fracture. This review aims to evaluate the current knowledge of adverse effects of glitazone therapy on the skeleton. Articles in English, Spanish, German and French published up until April 2009 are included. Results from preclinical studies have demonstrated that activation of PPAR-γ inhibits bone formation by primarily diverting mesenchymal stem cells to the adipocytic rather than to the osteogenic lineage, and that glitazones may increase bone resorption by stimulating osteoclasts. Numerous studies in humans have demonstrated decreased bone turnover, accelerated bone loss and impaired bone mineral density both in healthy volunteers and in patients with type 2 diabetes. Furthermore, results from recent large, randomized controlled trials and from observational studies provided evidence for an increased fracture risk for glitazone users, mostly for women, but possibly also for men. As a consequence of these observations, clinicians should carefully assess the fracture risk in patients with type 2 diabetes before starting therapy with glitazones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yki-Jarvinen H. The PROactive study: some answers, many questions. Lancet 2005 Oct 8; 366(9493): 1241–2

    Article  PubMed  Google Scholar 

  2. Gerstein HC, Yusuf S, Bosch J, et al. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet 2006 Sep 23; 368(9541): 1096–105

    Article  PubMed  CAS  Google Scholar 

  3. Stout DL, Fugate SE. Thiazolidinediones for treatment of polycystic ovary syndrome. Pharmacotherapy 2005 Feb; 25(2): 244–52

    Article  PubMed  CAS  Google Scholar 

  4. Solomon CG. The epidemiology of polycystic ovary syndrome: prevalence and associated disease risks. Endocrinol Metab Clin North Am 1999 Jun; 28(2): 247–63

    Article  PubMed  CAS  Google Scholar 

  5. Ratziu V, Giral P, Jacqueminet S, et al. Rosiglitazone for nonalcoholic steatohepatitis: one-year results of the randomized placebo-controlled Fatty Liver Improvement with Rosiglitazone Therapy (FLIRT) trial. Gastroenterology 2008 Jul; 135(1): 100–10

    Article  PubMed  CAS  Google Scholar 

  6. Yki-Jarvinen H. Thiazolidinediones. N Engl J Med 2004 Sep 9; 351(11): 1106–18

    Article  PubMed  Google Scholar 

  7. Miyazaki Y, Defronzo RA. Rosiglitazone and pioglitazone similarly improve insulin sensitivity and secretion, glucose tolerance and adipocytokines in type 2 diabetic patients. Diabetes Obes Metab 2008 Dec; 10(12): 1204–11

    PubMed  CAS  Google Scholar 

  8. Betteridge DJ. Effects of pioglitazone on lipid and lipoprotein metabolism. Diabetes Obes Metab 2007 Sep; 9(5): 640–7

    Article  PubMed  CAS  Google Scholar 

  9. Kahn SE, Haffner SM, Heise MA, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 2006 Dec 7; 355(23): 2427–43

    Article  PubMed  CAS  Google Scholar 

  10. Rosenstock J, Chou H, Matthaei S, et al. Potential benefits of early addition of rosiglitazone in combination with glimepiride in the treatment of type 2 diabetes. Diabetes Obes Metab 2008 Sep; 10(10): 862–73

    Article  PubMed  CAS  Google Scholar 

  11. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 2007 Jun 14; 356(24): 2457–71

    Article  PubMed  CAS  Google Scholar 

  12. Singh S, Loke YK, Furberg CD. Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis. JAMA 2007 Sep 12; 298(10): 1189–95

    Article  PubMed  CAS  Google Scholar 

  13. Singh S, Loke YK. The safety of rosiglitazone in the treatment of type 2 diabetes. Expert Opin Drug Saf 2008 Sep; 7(5): 579–85

    Article  PubMed  CAS  Google Scholar 

  14. Stafylas PC, Sarafidis PA, Lasaridis AN. The controversial effects of thiazolidinediones on cardiovascular morbidity and mortality. Int J Cardiol 2009 Jan 24; 131(3): 298–304

    Article  PubMed  Google Scholar 

  15. Monami M, Marchionni N, Mannucci E. Winners and losers at the rosiglitazone gamble: a meta-analytical approach at the definition of the cardiovascular risk profile of rosiglitazone. Diabetes Res Clin Pract 2008 Oct; 82(1): 48–57

    Article  PubMed  CAS  Google Scholar 

  16. Lincoff AM, Wolski K, Nicholls SJ, et al. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA 2007 Sep 12; 298(10): 1180–8

    Article  PubMed  CAS  Google Scholar 

  17. Khanderia U, Pop-Busui R, Eagle KA. Thiazolidinediones in type 2 diabetes: a cardiology perspective. Ann Pharmacother 2008 Oct; 42(10): 1466–74

    Article  PubMed  CAS  Google Scholar 

  18. Nissen SE, Nicholls SJ, Wolski K, et al. Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA 2008 Apr 2; 299(13): 1561–73

    Article  PubMed  CAS  Google Scholar 

  19. Abbasi F, Farin HM, Lamendola C, et al. Pioglitazone administration decreases cardiovascular disease risk factors in insulin-resistant smokers. Metabolism 2008 Aug; 57(8): 1108–14

    Article  PubMed  CAS  Google Scholar 

  20. Charbonnel B, Dormandy J, Erdmann E, et al. The prospective pioglitazone clinical trial in macrovascular events (PROactive): can pioglitazone reduce cardiovascular events in diabetes? Study design and baseline characteristics of 5238 patients. Diabetes Care 2004 Jul; 27(7): 1647–53

    Article  PubMed  Google Scholar 

  21. Short R. Fracture risk is a class effect of glitazones. BMJ 2007 Mar 17; 334(7593): 551

    Article  PubMed  Google Scholar 

  22. Hampton T. Diabetes drugs tied to fractures in women. JAMA 2007 Apr 18; 297(15): 1645

    Article  PubMed  CAS  Google Scholar 

  23. Grey A. Thiazolidinedione-induced skeletal fragility: mechanisms and implications. Diabetes Obes Metab 2009 Apr; 11(4): 275–84

    Article  PubMed  CAS  Google Scholar 

  24. Giaginis C, Tsantili-Kakoulidou A, Theocharis S. Peroxisome proliferator-activated receptors (PPARs) in the control of bone metabolism. Fundam Clin Pharmacol 2007 Jun; 21(3): 231–44

    Article  PubMed  CAS  Google Scholar 

  25. Gimble JM, Robinson CE, Wu X, et al. Peroxisome proliferator-activated receptor-gamma activation by thiazolidinediones induces adipogenesis in bone marrow stromal cells. Mol Pharmacol 1996 Nov; 50(5): 1087–94

    PubMed  CAS  Google Scholar 

  26. Kawaguchi H, Akune T, Yamaguchi M, et al. Distinct effects of PPARgamma insufficiency on bone marrow cells, osteoblasts, and osteoclastic cells. J Bone Miner Metab 2005; 23(4): 275–9

    Article  PubMed  Google Scholar 

  27. Lecka-Czernik B, Moerman EJ, Grant DF, et al. Divergent effects of selective peroxisome proliferator-activated receptor-gamma 2 ligands on adipocyte versus osteoblast differentiation. Endocrinology 2002 Jun; 143(6): 2376–84

    Article  PubMed  CAS  Google Scholar 

  28. Okazaki R, Toriumi M, Fukumoto S, et al. Thiazolidinediones inhibit osteoclast-like cell formation and bone resorption in vitro. Endocrinology 1999 Nov; 140(11): 5060–5

    Article  PubMed  CAS  Google Scholar 

  29. Mbalaviele G, Abu-Amer Y, Meng A, et al. Activation of peroxisome proliferator-activated receptor-gamma pathway inhibits osteoclast differentiation. J Biol Chem 2000 May 12; 275(19): 14388–93

    Article  PubMed  CAS  Google Scholar 

  30. Chan BY, Gartland A, Wilson PJ, et al. PPAR agonists modulate human osteoclast formation and activity in vitro. Bone 2007 Jan; 40(1): 149–59

    Article  PubMed  CAS  Google Scholar 

  31. Grey A. Skeletal consequences of thiazolidinedione therapy. Osteoporos Int 2008 Feb; 19(2): 129–37

    Article  PubMed  CAS  Google Scholar 

  32. Rosen CJ, Bouxsein ML. Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol 2006 Jan; 2(1): 35–43

    Article  PubMed  CAS  Google Scholar 

  33. Lazarenko OP, Rzonca SO, Hogue WR, et al. Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinology 2007 Jun; 148(6): 2669–80

    Article  PubMed  CAS  Google Scholar 

  34. Wan Y, Chong LW, Evans RM. PPAR-gamma regulates osteoclastogenesis in mice. Nat Med 2007 Dec; 13(12): 1496–503

    Article  PubMed  CAS  Google Scholar 

  35. Sottile V, Seuwen K, Kneissel M. Enhanced marrow adipogenesis and bone resorption in estrogen-deprived rats treated with the PPARgamma agonist BRL49653 (rosiglitazone). Calcif Tissue Int 2004 Oct; 75(4): 329–37

    Article  PubMed  CAS  Google Scholar 

  36. Akune T, Ohba S, Kamekura S, et al. PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest 2004 Mar; 113(6): 846–55

    PubMed  CAS  Google Scholar 

  37. Klein RF, Allard J, Avnur Z, et al. Regulation of bone mass in mice by the lipoxygenase gene Alox15. Science 2004 Jan 9; 303(5655): 229–32

    Article  PubMed  CAS  Google Scholar 

  38. Schwartz AV, Sellmeyer DE, Vittinghoff E, et al. Thiazolidinedione use and bone loss in older diabetic adults. J Clin Endocrinol Metab 2006 Sep; 91(9): 3349–54

    Article  PubMed  CAS  Google Scholar 

  39. Glintborg D, Andersen M, Hagen C, et al. Association of pioglitazone treatment with decreased bone mineral density in obese premenopausal patients with polycystic ovary syndrome: a randomized, placebo-controlled trial. J Clin Endocrinol Metab 2008 May; 93(5): 1696–701

    Article  PubMed  CAS  Google Scholar 

  40. Okazaki R, Miura M, Toriumi M, et al. Short-term treatment with troglitazone decreases bone turnover in patients with type 2 diabetes mellitus. Endocr J 1999 Dec; 46(6): 795–801

    Article  PubMed  CAS  Google Scholar 

  41. Berberoglu Z, Gursoy A, Bayraktar N, et al. Rosiglitazone decreases serum bone-specific alkaline phosphatase activity in postmenopausal diabetic women. J Clin Endocrinol Metab 2007 Sep; 92(9): 3523–30

    Article  PubMed  CAS  Google Scholar 

  42. Grey A, Bolland M, Gamble G, et al. The peroxisome proliferator-activated receptor-gamma agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J Clin Endocrinol Metab 2007 Apr; 92(4): 1305–10

    Article  PubMed  CAS  Google Scholar 

  43. Meier C, Kraenzlin ME, Bodmer M, et al. Use of thiazolidinediones and fracture risk. Arch Intern Med 2008 Apr 28; 168(8): 820–5

    Article  PubMed  CAS  Google Scholar 

  44. Yaturu S, Bryant B, Jain SK. Thiazolidinedione treatment decreases bone mineral density in type 2 diabetic men. Diabetes Care 2007 Jun; 30(6): 1574–6

    Article  PubMed  CAS  Google Scholar 

  45. Kahn SE, Zinman B, Lachin JM, et al. Rosiglitazone-associated fractures in type 2 diabetes: an Analysis from a Diabetes Outcome Progression Trial (ADOPT). Diabetes Care 2008 May; 31(5): 845–51

    Article  PubMed  CAS  Google Scholar 

  46. US Food and Drug Administration. Actos (pioglitazone) tablets [online]. Available from URL: http://www.fda.gov/medwatch/safety/2007/safety07.htm#actos [Accessed 2009 Apr 29]

  47. Loke YK, Singh S, Furberg CD. Long-term use of thiazolidinediones and fractures in type 2 diabetes: a meta-analysis. CMAJ 2009 Jan 6; 180(1): 32–9

    Article  PubMed  Google Scholar 

  48. Sanders KM, Seeman E, Ugoni AM, et al. Age- and gender-specific rate of fractures in Australia: a population-based study. Osteoporos Int 1999; 10(3): 240–7

    Article  PubMed  CAS  Google Scholar 

  49. Garraway WM, Stauffer RN, Kurland LT, et al. Limb fractures in a defined population: I. Frequency and distribution. Mayo Clin Proc 1979 Nov; 54(11): 701–7

    PubMed  CAS  Google Scholar 

  50. Nicodemus KK, Folsom AR. Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care 2001 Jul; 24(7): 1192–7

    Article  PubMed  CAS  Google Scholar 

  51. Schwartz AV, Sellmeyer DE, Ensrud KE, et al. Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab 2001 Jan; 86(1): 32–8

    Article  PubMed  CAS  Google Scholar 

  52. Bonds DE, Larson JC, Schwartz AV, et al. Risk of fracture in women with type 2 diabetes: the Women’s Health Initiative Observational Study. J Clin Endocrinol Metab 2006 Sep; 91(9): 3404–10

    Article  PubMed  CAS  Google Scholar 

  53. Strotmeyer ES, Cauley JA, Schwartz AV, et al. Nontraumatic fracture risk with diabetes mellitus and impaired fasting glucose in older white and black adults: the health, aging, and body composition study. Arch Intern Med 2005 Jul 25; 165(14): 1612–7

    Article  PubMed  Google Scholar 

  54. Vestergaard P, Rejnmark L, Mosekilde L. Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia 2005 Jul; 48(7): 1292–9

    Article  PubMed  CAS  Google Scholar 

  55. Ahmed LA, Joakimsen RM, Berntsen GK, et al. Diabetes mellitus and the risk of non-vertebral fractures: the Tromso study. Osteoporos Int 2006; 17(4): 495–500

    Article  PubMed  Google Scholar 

  56. Dormandy J, Bhattacharya M, van Troostenburg de Bruyn AR, on behalf of the PROactive investigators. Safety and tolerability of pioglitazone in high-risk patients with type 2 diabetes: an overview of data from PROactive. Drug Saf 2009; 32(3): 187–202

    Article  PubMed  CAS  Google Scholar 

  57. Verhaeghe J, Suiker AM, Einhorn TA, et al. Brittle bones in spontaneously diabetic female rats cannot be predicted by bone mineral measurements: studies in diabetic and ovariectomized rats. J Bone Miner Res 1994 Oct; 9(10): 1657–67

    Article  PubMed  CAS  Google Scholar 

  58. Schwartz AV, Hillier TA, Sellmeyer DE, et al. Older women with diabetes have a higher risk of falls: a prospective study. Diabetes Care 2002 Oct; 25(10): 1749–54

    Article  PubMed  Google Scholar 

  59. Gregg EW, Mangione CM, Cauley JA, et al. Diabetes and incidence of functional disability in older women. Diabetes Care 2002 Jan; 25(1): 61–7

    Article  PubMed  Google Scholar 

  60. Cundy TF, Edmonds ME, Watkins PJ. Osteopenia and metatarsal fractures in diabetic neuropathy. Diabet Med 1985 Nov; 2(6): 461–4

    Article  PubMed  CAS  Google Scholar 

  61. Schwartz AV, Sellmeyer DE, Strotmeyer ES, et al. Diabetes and bone loss at the hip in older black and white adults. J Bone Miner Res 2005 Apr; 20(4): 596–603

    Article  PubMed  Google Scholar 

  62. Nathan DM, Buse JB, Davidson MB, et al. Management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy. A consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2006 Aug; 29(8): 1963–72

    Article  PubMed  Google Scholar 

  63. Edwards KL, Alvarez C, Irons BK, et al. Third-line agent selection for patients with type 2 diabetes mellitus uncontrolled with sulfonylureas and metformin. Pharmacotherapy 2008 Apr; 28(4): 506–21

    Article  PubMed  CAS  Google Scholar 

  64. Massi-Benedetti M, Orsini-Federici M. Treatment of type 2 diabetes with combined therapy: what are the pros and cons? Diabetes Care 2008 Feb; 31 Suppl. 2: S131–5

    Article  PubMed  Google Scholar 

  65. Ton FN, Gunawardene SC, Lee H, et al. Effects of low-dose prednisone on bone metabolism. J Bone Miner Res 2005 Mar; 20(3): 464–70

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. Christoph Meier has undertaken consultant work for Takeda Pharmaceuticals, the manufacturer of one of the drugs discussed in this review, and has received grants and has grants pending for epidemiological studies involving pioglitazone and other drugs produced by Takeda Pharmaceuticals. The other authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph R. Meier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodmer, M., Meier, C., Kraenzlin, M.E. et al. Risk of Fractures with Glitazones. Drug-Safety 32, 539–547 (2009). https://doi.org/10.2165/00002018-200932070-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200932070-00001

Keywords

Navigation