, Volume 24, Issue 4, pp 237-247
Date: 15 Aug 2012

Stem Cell Therapies to Treat Muscular Dystrophy

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Muscular dystrophies are heritable, heterogeneous neuromuscular disorders and include Duchenne and Becker muscular dystrophies (DMD and BMD, respectively). DMD patients exhibit progressive muscle weakness and atrophy followed by exhaustion of muscular regenerative capacity, fibrosis, and eventually disruption of the muscle tissue architecture. In-frame mutations in the dystrophin gene lead to expression of a partially functional protein, resulting in the milder BMD. No effective therapies are available at present. Cell-based therapies have been attempted in an effort to promote muscle regeneration, with the hope that the host cells would repopulate the muscle and improve muscle function and pathology. Injection of adult myoblasts has led to the development of new muscle fibers, but several limitations have been identified, such as poor cell survival and limited migratory ability. As an alternative to myoblasts, stem cells were considered preferable for therapeutic applications because of their capacity for self-renewal and differentiation potential. In recent years, encouraging results have been obtained with adult stem cells to treat human diseases such as leukemia, Parkinson's disease, stroke, and muscular dystrophies. Embryonic stem cells (ESCs) can be derived from mammalian embryos in the blastocyst stage, and because they can differentiate into a wide range of specialized cells, they hold potential for use in treating almost all human diseases. Several ongoing studies focus on this possibility, evaluating differentiation of specific cell lines from human ESCs (hESCs) as well as the potential tumorigenicity of hESCs. The most important limitation with using hESCs is that it requires destruction of human blastocysts or embryos. Conversely, adult stem cells have been identified in various tissues, where they serve to maintain, generate, and replace terminally differentiated cells within their specific tissue as the need arises for cell turnover or from tissue injury. Moreover, these cells can participate in regeneration of more than just their specific tissue type. Here we describe multiple types of muscle- and fetal-derived myogenic stem cells, their characterization, and their possible use in treating muscular dystrophies such as DMD and BMD. We also emphasize that the most promising possibility for the management and therapy of DMD and BMD is a combination of different approaches, such as gene and stem cell therapy.