, Volume 22, Issue 1, pp 41-51
Date: 23 Aug 2012

Health Implications of Exposure to Environmental Nitrogenous Compounds

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

All living systems need nitrogen for the production of complex organic molecules, such as proteins, nucleic acids, vitamins, hormones and enzymes. Due to the intense use of synthetic nitrogen fertilisers and livestock manure in modern day agriculture, food (particularly vegetables) and drinking water may contain higher concentrations of nitrate than in the past. The mean intake of nitrate per person in Europe is about 50–140 mg/ day and in the US about 40–100 mg/day. In the proximal small intestine, nitrate is rapidly and almost completely absorbed (bioavailability at least 92%). In humans, approximately, 25% of the nitrate ingested is secreted in saliva, where some 20% (about 5–8% of the nitrate intake) is converted to nitrite by commensal bacteria. The nitrite so formed is then absorbed primarily in the small intestine.

Nitrate may also be synthesised endogenously from nitric oxide (especially in case of inflammation), which reacts to form nitrite. Normal healthy adults excrete in the urine approximately 62mg nitrate ion/day from endogenous synthesis. Thus, when nitrate intake is low and there are no additional exogenous sources (e.g. gastrointestinal infections), the endogenous production of nitrate is more important than exogenous sources.

Nitrate itself is generally regarded nontoxic. Toxicity is usually the result of the conversion of nitrate into the more toxic nitrite. There are two major toxicological concerns regarding nitrite. First, nitrite may induce methaemoglobinaemia, which can result in tissue hypoxia, and possibly death. Secondly, nitrite may interact with secondary or N-alkyl-amides to form N-nitroso carcinogens. However, epidemiological investigations and human toxicological studies have not shown an unequivocal relationship between nitrate intake and the risk of cancer.

The Joint Expert Committee of the Food and Agriculture Organization of the United Nations/World Health Organization (JECFA) and the European Commission’s Scientific Committee on Food have set an acceptable daily intake (ADI) for nitrate of 0–3.7mg nitrate ion/kg bodyweight; this appears to be safe for healthy neonates, children and adults. The same is also true of the US Environmental Protection Agency (EPA) Reference Dose (RfD) for nitrate of 1.6mg nitrate nitrogen/kg bodyweight per day (equivalent to about 7.0mg nitrate ion/kg bodyweight per day). This opinion is supported by a recent human volunteer study in which a single dose of nitrite, equivalent to 15–20 times the ADI for nitrate, led to only mild methaemoglobinaemia (up to 12.2%), without other serious adverse effects.

The JECFA has proposed an ADI for nitrite of 0–0.07mg nitrite ion/kg bodyweight and the EPA has set an RfD of 0.1mg nitrite nitrogen/kg bodyweight per day (equivalent to 0.33mg nitrite ion/kg bodyweight per day). These values are again supported by human volunteer studies.