, Volume 37, Issue 1, pp 15-30

Cardiac Tissue Doppler Imaging in Sports Medicine

Purchase on Springer.com

$49.95 / €39.95 / £34.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The differentiation of training-induced cardiac adaptations from pathological conditions is a key issue in sports cardiology. As morphological features do not allow for a clear delineation of early stages of relevant pathologies, the echocardiographic evaluation of left ventricular function is the technique of first choice in this regard.

Tissue Doppler imaging (TDI) is a relatively recent method for the assessment of cardiac function that provides direct, local measurements of myocardial velocities throughout the cardiac cycle. Although it has shown a superior sensitivity in the detection of ventricular dysfunction in clinical and experimental studies, its application in sports medicine is still rare. Besides technical factors, this may be due to a lack in consensus on the characteristics of ventricular function in relevant conditions.

For more than two decades there has been an ongoing debate on the existence of a supernormal left ventricular function in athlete’s heart. While results from traditional echocardiography are conflicting, TDI studies established an improved diastolic function in endurance-trained athletes with athlete’s heart compared with controls.

The influence of anabolic steroids on cardiac function also has been investigated by standard echocardiographic techniques with inconsistent results. The only TDI study dealing with this topic demonstrated a significantly impaired diastolic function in bodybuilders with long-term abuse of anabolic steroids compared with strength-trained athletes without abuse of anabolic steroids and controls, respectively.

Hypertrophic cardiomyopathy is the most frequent cause of sudden death in young athletes. However, in its early stages, it is difficult to distinguish from athlete’s heart. By means of TDI, ventricular dysfunction in hypertrophic cardiomyopathy can be disclosed even before the development of left ventricular hypertrophy. Also, a differentiation of left ventricular hypertrophy due to hypertrophic cardiomyopathy or systemic hypertension is possible by TDI.

Besides the evaluation of different forms of left ventricular hypertrophy, the diagnosis of myocarditis is also of particular importance in athletes. Today, it still requires myocardial biopsy. The analysis of focal disturbances in myocardial velocities might be a promising non-invasive method; however, systematic validation studies are lacking.

An important future issue for the implementation of TDI into routine examination will be the standardisation of procedures and the establishment of significant reference values for the above-mentioned conditions. Innovative TDI parameters also merit further investigation.