, Volume 36, Issue 11, pp 911-928
Date: 21 Nov 2012

Perceived Exertion

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Because little is known about the effects of aging on perceived exertion, the aim of this article is to review the key findings from the published literature concerning rating of perceived exertion (RPE) in relation to the developmental level of a subject. The use of RPE in the exercise setting has included both an estimation paradigm, which is the quantification of the effort sense at a given level of exercise, and a production paradigm, which involves producing a given physiological effort based on an RPE value.

The results of the review show that the cognitive developmental level of children aged 0–3 years does not allow them to rate their perceived exertion during a handgrip task. From 4 to 7 years of age, there is a critical period where children are able to progressively rate at first their peripheral sensory cues during handgrip tests, and then their cardiorespiratory cues during outdoor running in an accurate manner. Between 8 and 12 years of age, children are able to estimate and produce 2–4 cycling intensities guided by their effort sense and distinguish sensory cues from different parts of their body. However, most of the studies report that the exercise mode and the rating scale used could influence their perceptual responsiveness.

During adolescence, it seems that the RPE-heart rate (HR) relationship is less pronounced than in adults. Similar to observations made in younger children, RPE values are influenced by the exercise mode, test protocol and rating scale. Limited research has examined the ability of adolescents to produce a given exercise intensity based on perceived exertion. Little else is known about RPE in this age group.

In healthy middle-aged and elderly individuals, age-related differences in perceptual responsiveness may not be present as long as variations in cardiorespiratory fitness are taken into account. For this reason, RPE could be associated with HR as a useful tool for monitoring and prescribing exercise. In physically deconditioned elderly persons, a rehabilitation training programme may increase the subject’s ability to detect muscular sensations and the ability to utilise these sensory cues in the perception of effort.

RPE appears to be a cognitive function that involves a long and progressive developmental process from 4 years of age to adulthood. In healthy middle-aged and elderly individuals, RPE is not impaired by aging and can be associated with HR as a useful tool to control exercise intensity. While much is known about RPE responses in 8- to 12-year-old children, more research is needed to fully understand the influence of cognitive development on perceived exertion in children, adolescents and elderly individuals.