Skip to main content
Log in

Population Pharmacokinetics of High-Dose Methotrexate in Children with Acute Lymphoblastic Leukaemia

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Objective: To develop and a priori validate a methotrexate population pharmacokinetic model in children with acute lymphoblastic leukaemia (ALL), receiving high-dose methotrexate followed by folinic acid rescue, identifying the covariates that could explain part of the pharmacokinetic variability of methotrexate.

Methods: The study was carried out in 49 children (aged 6 months to 17 years) who received high-dose methotrexate (3 g/m2 per course) in long-term treatment. In an index group (37 individuals; 1236 methotrexate plasma concentrations), a population pharmacokinetic model was developed using a nonlinear mixed-effects model. The remaining patients’ data (12 individuals; 278 methotrexate plasma concentrations) were used for model validation. Age, sex, total bodyweight (TBW), height, body surface area, lowest urine pH during infusion, serum Creatinine, ALT, AST, folinic acid dose and length of rescue were analysed as possible covariates. The final predictive performance of the pharmacokinetic model was tested using standardised mean prediction errors.

Results: The final population pharmacokinetic model (two-compartmental) included only age and total bodyweight as influencing clearance (CL) and volume of distribution of central compartment (V1). For children aged ≤10 years: CL (L/h) = 0.287 · TBWO-876; V1 (L) = 0.465 · TBW, and for children aged >10 years: CL (L/h) = 0.149 · TBW; V1 (L) = 0.437 · TBW. From the base to the final model, the inter-individual variabilities for CL and V1 were significantly reduced in both age groups (30–50%). The coefficients of variation of the pharmacokinetic parameters were <30%, while residual and inter-occasional coefficients maintained values close to 40%. Validation of the proposed model revealed the suitability of the model.

Conclusion: A methotrexate population pharmacokinetic model has been developed for ALL children. The proposed model could be used in Bayesian algorithms with a limited sampling strategy to estimate the systemic exposure of individual patients to methotrexate and adapt both folinic acid rescue and methotrexate dosing accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Fig. 1
Table III
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pui CH, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med 2006; 354: 166–78

    Article  PubMed  CAS  Google Scholar 

  2. Evans WE. Methotrexate. In: Evans WE, Schentag JJ, Jusko WJ, editors. Applied pharmacokinetics: principles of therapeutics. Spokane (WA): Applied Pharmacokinetics Inc., 1980: 518–48

    Google Scholar 

  3. Evans WE, Crom WR, Stewart CF, et al. Methotrexate systemic clearance influences the probability of relapse in children with standard-risk acute lymphocytic leukemia. Lancet 1984; I: 359–62

    Article  Google Scholar 

  4. Evans WE, Crom WR, Abromowitch M, et al. Clinical pharmacodynamic of high-dose-methotrexate in acute lymphoblastic leukemia: identification of a relation between concentration and effects. N Engl J Med 1986; 314: 471–7

    Article  PubMed  CAS  Google Scholar 

  5. Borsi JD, Moe PJ. Systemic clearance of methotrexate in the prognosis of acute lymphoblastic leukemia in children. Cancer 1987; 60(12): 3020–4

    Article  PubMed  CAS  Google Scholar 

  6. Niemeyer CM, Gelber RD, Tarbeil NJ, et al. Low-dose versus high-dose methotrexate during remission induction in childhood acute lymphoblastic leukemia (Protocol 81–01 update). Blood 1991; 78(10): 2514–9

    PubMed  CAS  Google Scholar 

  7. Groninger E, Proost JH, Graaf SSN. Pharmacokinetic studies in children with cancer. Crit Rev Oncol Hematol 2004; 52(3): 173–297

    Article  PubMed  CAS  Google Scholar 

  8. Evans WE, Relling MV, Rodman JH, et al. Conventional compared with individualized chemotherapy for childhood acute lymphoblastic leukaemia. N Engl J Med 1998; 338(8): 499–505

    Article  PubMed  CAS  Google Scholar 

  9. Evans WE, Relling MV, Boyett JM, et al. Does pharmacokinetic variability influence the efficacy of high-dose methotrexate fo the treatment of children with acute lymphbastic leukemia: what can we learn from small studies? Leuk Res 1997; 21(5): 435–7

    Article  PubMed  CAS  Google Scholar 

  10. Wall AM, Gajjar A, Link A, et al. Individualized methotrexate dosing in children with relapsed acute lymphoblastic leukemia. Leukemia 2000; 14(2): 221–5

    Article  PubMed  CAS  Google Scholar 

  11. Rask C, Albertioni F, Bentzen SM, et al. Clinical and pharmacokinetic risk factors for high-dose methotrexate induced toxicity in children with acute leukaemia: a logistic regression. Acta Oncol 1998; 37(3): 277–84

    Article  PubMed  CAS  Google Scholar 

  12. Bratlid D, Moe PJ. Pharmacokinetics of high-dose methotrexate treatment in children. Eur J Clin Pharmacol 1978; 14(2): 143–7

    Article  PubMed  CAS  Google Scholar 

  13. Rask C, Albertioni F, Schroeder H, et al. Oral mucositus in children with acute Lymphoblastic Leukemia after high-dose methotrexate treatment without delayed elimination of methotrexate. Pediatr Hematol Oncol 1996; 13: 359–67

    Article  PubMed  CAS  Google Scholar 

  14. el-Yazigi A, Amer M, Al-Saleh I, et al. Pharmacokinetics of methotrexate and its 7-OH metabolite in cancer patients treated with different high-methotrexate dosage regimens. Int J Cancer 1986; 38(6): 795–800

    Article  PubMed  CAS  Google Scholar 

  15. Rodman JH, Sunderland M, Kavanagh RL, et al. Pharmacokinetics of continuous infusion of methotrexate and teniposide in pediatric cancer patients. Cancer Res 1990; 50(14): 4267–71

    PubMed  CAS  Google Scholar 

  16. Rubnitz JE, Relling MV, Harrison PL, et al. Transient encephalopathy following high-dose methotrexate treatment in childhood acute lymphoblastic leujemia. Leukemia 1998; 12: 1176–81

    Article  PubMed  CAS  Google Scholar 

  17. Odoul F, Le Guellec CL, Lamagneré JP, et al. Prediction of methotrexate elimination after high dose infusion in children with acute lymphoblastic leukaemia using a population pharmacokinetic approach. Fundam Clin Pharmacol 1999; 13: 595–604

    Article  PubMed  CAS  Google Scholar 

  18. Badell I, Cubells J, Estella J, et al. SHOP. Comparación de los resultados de los Protocolos SHOP 89 y SHOP 94 en el tratamiento de 681 pacientes pediátricos afectos de Leucemia Aguda Linfoblástica [abstract]. Hematológica 2001; 86(S2): 38

    Google Scholar 

  19. Cubells J, Badell I, Estella J, et al. Protocolo de estudio y tratamiento de la leucemia aguda linfoblastica en pediatria (LAL/SHOP-99). Rev Esp Pediatr 2001; 57(6): 523–33

    Google Scholar 

  20. Felix CA, Lange BJ, Chessells JM. Pédiatrie Acute lymphoblastic leukemia: challenges and controversies in 2000. Hematology Am Soc Hematol Educ Program 2000, 302

  21. Fotoohi K, Skarby T, Soderhall S, et al. Interference of 7-hydroxymethotrexate with the determination of methotrexate in plasma samples from children with acute lymphoblastic leukemia employing routine clinical assays. J Chromatogr B Analyt Technol Biomed Life Sci 2005 Mar 25; 817(2): 139–44

    Article  PubMed  CAS  Google Scholar 

  22. Sheiner LB, Beal SL. NONMEM users guide, parts I–VI. San Francisco: NONMEM Project Group at the University of California at San Francisco (CA), 1989

  23. Jonsson EN, Karlsson MO. Xpose: an S-PLUS based population pharmacokinetic/ pharmacodynamic model building aid for NONMEM. Comput Methods Programs Biomed 1999; 58(1): 51–64

    Article  PubMed  CAS  Google Scholar 

  24. Du Bois D, Du Bois EF. A formula to estimate the approximate surface area if height and weight are known. Arch Intern Med 1916; 17: 863–71

    Google Scholar 

  25. D’Argenio DZ, Schumitzky A. ADAPT II user’s guide: pharmacokinetics/pharmacodynamics system analysis software. Los Angeles (CA): Biomedical Simulations Resource, 1997

    Google Scholar 

  26. Sheiner LB, Beal SL. Some suggestions for measuring predictive performance. J Pharmacokinet Biopharm 1981; 9(4): 503–12

    PubMed  CAS  Google Scholar 

  27. Vozeh S, Maitre PO, Stanski DR. Evaluation of population (NONMEM) pharmacokinetic parameter estimates. J Pharmacokinet Biopharm 1990; 18(2): 161–3

    PubMed  CAS  Google Scholar 

  28. SPSS. SPSS for Windows: release 10.0.7 user’s manual. Chicago (IL): SPSS, 2000

    Google Scholar 

  29. Sabot C, Debord J, Roullet B, et al. Comparison of 2- and 3-compartment models for the Bayesian estimation of methotrexate pharmacokinetics. Int J Clin Pharmacol Ther 1995 Mar; 33(3): 164–9

    PubMed  CAS  Google Scholar 

  30. Faltaos DW, Hulot JS, Urien S, et al. Population pharmacokinetic study of methotrexate in patients with lymphoid malignancy. Cancer Chemother Pharmacol 2006; 58(5): 626–33

    Article  PubMed  CAS  Google Scholar 

  31. Godfrey C, Sweeney K, Miller K, et al. The population pharmacokinetics of long-term methotrexate in rheumatoid arthritis. Br J Clin Pharmacol 1998; 46(4): 369–76

    Article  PubMed  CAS  Google Scholar 

  32. Batey MA, Wright JG, Azzabi A, et al. Population pharmacokinetics of adjuvant cyclophosphamide, methotrexate and 5-fluorouracil (CMF). Eur J Cancer 2002; 38(8): 1081–9

    Article  PubMed  CAS  Google Scholar 

  33. Rousseau A, Sabot C, Delepine N, et al. Bayesian estimation of methotrexate pharmacokinetic parameters and area under the curve in children and young adults with localised osteosarcoma. Clin Pharmacokinet 2002; 41(13): 1095–104

    Article  PubMed  CAS  Google Scholar 

  34. Donelli MG, Zucchetti M, Robatto A, et al. Pharmacokinetics of HD-MTX in infants, children, and adolescents with non-B acute lymphoblastic leukemia. Med Pediatr Oncol 1995; 24(3): 154–9

    Article  PubMed  CAS  Google Scholar 

  35. Evans WE, Stewart CF, Hutson PR, et al. Disposition of intermediate-dose methotrexate in children with acute lymphocytic leukemia. Drug Intell Clin Pharm 1982; 16(11): 839–42

    PubMed  CAS  Google Scholar 

  36. Garre ML, Relling MV, Kalwinsky D, et al. Pharmacokinetics and toxicity of methotrexate in children with Down syndrome and acute lymphocytic leukemia. J Pediatr 1987; 111(4): 606–12

    Article  PubMed  CAS  Google Scholar 

  37. Borsi JD, Moe PJ. A comparative study on the pharmacokinetics of methotrexate in a dose range of 0.5g to 33.6 g/m2 in children with acute lymphoblastic leukemia. Cancer 1987; 60(1): 5–13

    Article  PubMed  CAS  Google Scholar 

  38. Wolfrom C, Hepp R, Hartmann R, et al. Pharmacokinetic study of methotrexate, folinic acid and their serum metabolites in children treated with high-dose-methotrexate and leucovorin rescue. Eur J Clin Pharmacol 1990; 39: 377–83

    Article  PubMed  CAS  Google Scholar 

  39. Koren G, Ferrazzini G, Sohl H, et al. Chronopharmacology of methotrexate pharmacokinetics in childhood leukemia. Chronobiol Int 1992; 9(6): 434–8

    Article  PubMed  CAS  Google Scholar 

  40. Najjar TAO, Al Fawaz IB. Pharmacokinetics of methotrexate in children with acute lymphocytic leukemia. Chemotherapy 1993; 39: 242–7

    Article  PubMed  CAS  Google Scholar 

  41. Bacci G, Ferrari S, Longhi A, et al. Delayed methotrexate clearance in osteosarcoma patients treated with multiagent regimens of neoadjuvant chemotherapy. Oncol Rep 2003; 10(4): 851–7

    PubMed  CAS  Google Scholar 

  42. Treon SP, Chabner BA. Concepts in use of high-dose methotrexate therapy. Clin Chem 1996; 42: 1322–9

    PubMed  CAS  Google Scholar 

  43. Pitman SW, Frei E. Weekly methotrexate-calcium leucovorin rescue: effect of alkalinization on nephrotoxicity, pharmacokinetics in the CNS and use in CNS non-Hodgkin’s Lymphoma. Cancer Treat Rep 1997; 61(4): 695–701

    Google Scholar 

  44. Relling M, Fairclough D, Ayers D, et al. Patient characteristics associated with high-risk methotrexate concentrations and toxicity. J Clin Oncol 1994; 12(8): 1667–72

    PubMed  CAS  Google Scholar 

  45. Skärby T, Jönsson P, Hjorth L, et al. High-dose methotrexate: on the relationship of methotrexate elimination time vs renal function and serum methotrexate levels in 1164 courses in 264 Swedish children with acute lymphobaltic leukaemia (ALL). Cancer Chemother Pharmacol 2003; 51: 311–20

    PubMed  Google Scholar 

  46. Scidel H, Nygaard R, Moe PJ, et al. On the prognostic value of systemic methotrexate clearance in childhood acute lymphocytic leukemia. Leuk Res 1997; 21(5): 429–34

    Article  Google Scholar 

  47. Lawrence JR, Steele WH, Stuart JF, et al. Dose dependent methotrexate elimination following bolus intravenous injection. Eur J Clin Pharmacol 1980; 17(5): 371–4

    Article  PubMed  CAS  Google Scholar 

  48. Cano JP, Bruno R, Lena N, et al. Dosage predictions in high-dose methotrexate infusions. Part 1: Evaluation of the classic test-dose protocol. Cancer Drug Deliv 1985; 2(4): 271–6

    Article  PubMed  CAS  Google Scholar 

  49. Pignon T, Lacarelle B, Duffaud F, et al. Dosage adjustment of high dose methotrexate using bayesian estimation: a comparative study of two different concentrations at the end of 8-h infusions. Ther Drug Monit 1995; 17(5): 471–8

    Article  PubMed  CAS  Google Scholar 

  50. Iliadis A, Bachir-Raho M, Bruno R, et al. Bayesian estimation and prediction of clearance in high-dose methotrexate infusions. J Pharmacokinet Biopharm 1985; 13(1): 101–15

    PubMed  CAS  Google Scholar 

  51. Scidel H, Andersen A, Kvaloy JT, et al. Variability in methotrexate serum and cerebrospinal fluid pharmacokinetics in children with acute lymphocytic leukemia: relation to assay methodology and physiological variables. Leuk Res 2000; 24(3): 193–9

    Article  Google Scholar 

  52. Rousseau A, Marquet P, Debord J, et al. Adaptive control methods for the dose individualisation of anticancer agents. Clin Pharmacokinet 2000; 38(4): 315–53

    Article  PubMed  CAS  Google Scholar 

  53. Monjanel-Mouterde S, Lejeune C, Ciccolini J, et al. Bayesian population model of methotrexate to guide dosage adjustments for folate rescue in patients with breast cancer. J Clin Pharm Ther 2002; 27(3): 189–95

    Article  PubMed  CAS  Google Scholar 

  54. Rousseau A, Marquet P. Application of pharmacokinetic modelling to the routine therapeutic drug monitoring of anticancer drugs. Fundamental and Clin Pharmacol 2002; 16(4): 253–62

    Article  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in this study. The authors have no potential conflicts of interest that are directly relevant to the content of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria José García.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aumente, D., Buelga, D.S., Lukas, J.C. et al. Population Pharmacokinetics of High-Dose Methotrexate in Children with Acute Lymphoblastic Leukaemia. Clin Pharmacokinet 45, 1227–1238 (2006). https://doi.org/10.2165/00003088-200645120-00007

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200645120-00007

Keywords

Navigation