, Volume 29, Issue 5, pp 292-332
Date: 20 Oct 2012

Clinical Pharmacokinetics of the Monoamine Oxidase-A Inhibitor Moclobemide

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Summary

There has been a resurgence of interest in the use of monoamine oxidase (MAO) enzyme inhibitors for the treatment of depression. Unlike the first-generation MAO inhibitors, the current drugs are readily reversible in their action, resulting in far less concern about interactions with certain foods and drugs which could lead to serious pressor effects. Furthermore, the current drugs are far more selective in their actions as a result of the ability to affect either the MAO-A or the MAO-B isoenzyme. Moclobemide is an example of a reversible MAO-A inhibitor which has been extensively studied and whose pharmacokinetic, clinical pharmacological and toxicological profiles have been thoroughly defined.

Moclobemide has a short disposition half-life and intermediate values for systemic clearance and volume of distribution; half-life increases somewhat with dose. The drug is completely metabolised by the liver. Moclobemide is rapidly and completely absorbed following oral administration in a variety of dosages and forms. The drug has a high intrinsic (apparent oral) clearance which results in a substantial hepatic first-pass effect and, while there is marked interindividual variation, differences within an individual are small. A time- and dose-dependence is observed with multiple oral administration: clearance decreases with administration during the first week and thereafter remains constant. The exact mechanism of this effect is not known, but it may reflect inhibition of elimination by metabolites (the kinetics may always be described as being first-order).

Moclobemide disposition is not affected by renal disease, nor is there substantial alteration with advanced age. Liver disease causes a dramatic reduction in clearance; dosage must be adjusted for patients with liver disease. There is minimal transfer of the drug into breast milk, such that breast-feeding neonates are exposed to only a very small dose of the drug.

Moclobemide administration results in a minimal interaction with exogenous amines (e.g. tyramine and pressor amine drugs); the so-called ‘cheese effect’ is therefore of little concern. As a result, the drug has an excellent tolerability profile both within the therapeutic dose range and in overdose (no deaths have been attributed to moclobemide intoxication per se). Cimetidine inhibits the elimination of moclobemide. Moclobemide appears to affect several isoenzymes of the cytochrome P450 (CYP) system (CYP2C19, CYP2D6 and CYP1A2). The adverse events profile of moclobemide indicates only mild and transient effects at a relatively low rate of occurrence.

This review is dedicated to the memory of the late Mose Da Prada (1934–1995) who was instrumental in the discovery and development of moclobemide, among many other achievements in the field of monoamine pharmacology