, Volume 23, Issue 1, pp 11-33
Date: 29 Dec 2012

Safety of Inhaled and Intranasal Corticosteroids

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Although inhaled and intranasal corticosteroids are first-line therapy for asthma and allergic rhinitis, there has recently been an increasing awareness of their propensity to produce systemic adverse effects. The availability of more potent and lipophilic corticosteroids and new chlorofluorocarbon (CFC)-free formulations has focused attention on these safety issues.

The main determinant of systemic bioavailability of these drugs is direct absorption from the lung or nose, where there is no first-pass inactivation. Consequently, the systemic bioavailability of inhaled corticosteroids is greatly influenced by the efficiency of the inhaler device. Thus, when comparing different inhaled corticosteroids it is imperative to consider the unique drug/device interaction.

The pharmacokinetic profile is important in determining the systemic bioactivity of inhaled and intranasal corticosteroids. For highly lipophilic drugs, such as fluticasone propionate or mometasone furoate, there is preferential partitioning into the systemic tissue compartment, and consequently a large volume of distribution at steady state. In contrast, drugs with lower lipophilicity, such as triamcinolone acetonide or budesonide, have a smaller volume of distribution. The systemic tissue compartment may act as a slow release reservoir, resulting in a long elimination half-life for the lipophilic drugs.

For intranasal corticosteroids, a high degree of lipophilicity diminishes water solubility in mucosa and therefore increases the amount of drug swept away by mucociliary clearance before it can gain access to tissue receptor sites. This may reduce the anti-inflammatory efficacy in the nose, but might also reduce the propensity for direct systemic absorption from the nasal cavity.

The hydrofluoroalkane (HFA) formulations of beclomethasone dipropionate are solutions and exhibit a much higher respirable fine particle dose than do the CFC formulations. Dose-response studies with one of the HFA formulations have shown therapeutic equivalence at half the dosage, with little evidence of adrenal suppression at dosages up to 800 μg/day. A lack of similar studies for another of the available HFA formulations has led to a discrepancy in the recommendations for equivalence. Although in vitro studies have pointed to a similar fine particle distribution for the HFA and CFC formulations of fluticasone propionate, this is not supported by in vivo data for lung bioavailability, suggesting that care will be required when switching these formulations.

Prescribers of inhaled and intranasal corticosteroids should be aware of the potential for long term systemic effects. The safest way to use these drugs is to ‘step-down’ to achieve the lowest possible effective maintenance dosage.