Skip to main content
Log in

Keeping Your Cool

Possible Mechanisms for Enhanced Exercise Performance in the Heat with Internal Cooling Methods

  • Current Opinion
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Exercising in hot environments results in a rise in core body temperature; an effect associated with impaired performance over a variety of exercise modes and durations. Precooling has become a popular strategy to combat this impairment, as evidence has shown it to be an effective method for lowering pre-exercise core temperature, increasing heat storage capacity and improving exercise performance in the heat. To date, the majority of precooling manoeuvres have been achieved via external means, such as cold water immersion and the application of cooling garments. However, these methods have been criticized for their lack of practicality for use in major sporting competitions. Recent evidence has shown that internal or endogenous cooling methods, such as drinking cold fluids or ice slurries, are able to lower core temperature and enhance endurance performance in the heat. These methods may be more advantageous than current forms of precooling, as ingesting cold fluids or ice slurries can be easily implemented in the field and provide the additional benefit of hydrating athletes. While the precise mechanisms responsible for these performance enhancements are yet to be fully explained, the effect of ice ingestion on brain temperature, internal thermoreception and sensory responses may be involved. This article addresses the evidence supporting the use of endogenous cooling methods for improving endurance performance in the heat, as well as discussing the potential mechanisms behind the improvements observed and providing practical recommendations to optimize their success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Galloway SD, Maughan RJ. Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man. Med Sci Sports Exerc 1997; 29 (9): 1240–9

    Article  PubMed  CAS  Google Scholar 

  2. Gonzalez-Alonso J, Teller C, Andersen SL, et al. Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol 1999; 86 (3): 1032–9

    PubMed  CAS  Google Scholar 

  3. Drust B, Rasmussen P, Mohr M, et al. Elevations in core and muscle temperature impairs repeated sprint performance. Acta Physiol Scand 2005; 183 (2): 181–90

    Article  PubMed  CAS  Google Scholar 

  4. Morris JG, Nevill ME, Boobis LH, et al. Muscle metabolism, temperature, and function during prolonged, intermittent, high-intensity running in air temperatures of 33 degrees and 17 degrees C. Int J Sports Med 2005; 26 (10): 805–14

    Article  PubMed  CAS  Google Scholar 

  5. Slater GJ, Rice AJ, Sharpe K, et al. Impact of acute weight loss and/or thermal stress on rowing ergometer performance. Med Sci Sports Exerc 2005; 37 (8): 1387–94

    Article  PubMed  Google Scholar 

  6. Altareki N, Drust B, Atkinson G, et al. Effects of environmental heat stress (35 degrees C) with simulated air movement on the thermoregulatory responses during a 4-km cycling time trial. Int J Sports Med 2009; 30 (1): 9–15

    Article  PubMed  CAS  Google Scholar 

  7. Cheung SS. Hyperthermia and voluntary exhaustion: integrating models and future challenges. Appl Physiol Nutr Metab 2007; 32 (4): 808–17

    Article  PubMed  Google Scholar 

  8. Duffield R. Cooling interventions for the protection and recovery of exercise performance from exercise-induced heat stress. In: Marino F, editor. Thermoregulation and human performance: physiological and biological aspects. Basel, Karger: Med Sport Sci, 2008: 89–103

    Chapter  Google Scholar 

  9. Marino FE. Methods, advantages, and limitations of body cooling for exercise performance. Br J Sports Med 2002; 36 (2): 89–94

    Article  PubMed  CAS  Google Scholar 

  10. Quod MJ, Martin DT, Laursen PB. Cooling athletes before competition in the heat: comparison of techniques and practical considerations. Sports Med 2006; 36 (8): 671–82

    Article  PubMed  Google Scholar 

  11. Sawka MN. Physiological consequences of hypohydration: exercise performance and thermoregulation. Med Sci Sports Exerc 1992; 24 (6): 657–70

    PubMed  CAS  Google Scholar 

  12. Duffield R, Green R, Castle P, et al. Precooling can prevent the reduction of self-paced exercise intensity in the heat.Med Sci Sports Exerc 2010; 42 (3): 577–84

    Article  PubMed  Google Scholar 

  13. Kay D, Taaffe DR, Marino FE. Whole-body pre-cooling and heat storage during self-paced cycling performance in warm humid conditions. J Sports Sci 1999; 17 (12): 937–44

    Article  PubMed  CAS  Google Scholar 

  14. Hessemer V, Langusch D, Bruck LK, et al. Effect of slightly lowered body temperatures on endurance performance in humans. J Appl Physiol 1984; 57 (6): 1731–7

    PubMed  CAS  Google Scholar 

  15. Lee DT, Haymes EM. Exercise duration and thermoregulatory responses after whole body precooling. J Appl Physiol 1995; 79 (6): 1971–6

    PubMed  CAS  Google Scholar 

  16. Olschewski H, Bruck K. Thermoregulatory, cardiovascular, and muscular factors related to exercise after precooling. J Appl Physiol 1988; 64 (2): 803–11

    PubMed  CAS  Google Scholar 

  17. Booth J, Marino F, Ward JJ. Improved running performance in hot humid conditions following whole body precooling. Med Sci Sports Exerc 1997; 29 (7): 943–9

    Article  PubMed  CAS  Google Scholar 

  18. White AT, Davis SL, Wilson TE. Metabolic, thermoregulatory, and perceptual responses during exercise after lower vs. whole body precooling. J Appl Physiol 2003; 94 (3): 1039–44

    PubMed  Google Scholar 

  19. Cotter JD, Sleivert GG, Roberts WS, et al. Effect of precooling, with and without thigh cooling, on strain and endurance exercise performance in the heat. Comp Biochem Physiol A Mol Integr Physiol 2001; 128 (4): 667–77

    Article  PubMed  CAS  Google Scholar 

  20. Hasegawa H, Takatori T, Komura T, et al. Combined effects of pre-cooling and water ingestion on thermoregulation and physical capacity during exercise in a hot environment. J Sports Sci 2006; 24 (1): 3–9

    Article  PubMed  Google Scholar 

  21. Quod MJ, Martin DT, Laursen PB, et al. Practical precooling: effect on cycling time trial performance in warm conditions. J Sports Sci 2008; 26 (14): 1477–87

    Article  PubMed  Google Scholar 

  22. Schmidt V, Bruck K. Effect of a precooling maneuver on body temperature and exercise performance. J Appl Physiol 1981; 50 (4): 772–8

    PubMed  CAS  Google Scholar 

  23. Berg GR, Utiger RD, Schalch DS, et al. Effect of central cooling in man on pituitary-thyroid function and growth hormone secretion. J Appl Physiol 1966; 21 (6): 1791–4

    PubMed  CAS  Google Scholar 

  24. Nadel ER, Horvath SM. Peripheral involvement in thermoregulatory response to an imposed heat debt in man. J Appl Physiol 1969; 27 (4): 484–8

    PubMed  CAS  Google Scholar 

  25. Imms FJ, Lighten AD. The cooling effects of a cold drink. In: Mercer JB, editor. Thermal physiology: proceedings of the International Symposiumon Thermal Physiology; 1989 Jul 16-21; Tromso. New York (NY): Elsevier Science, 1989: 135–9

    Google Scholar 

  26. Wimer GS, Lamb DR, Sherman WM, et al. Temperature of ingested water and thermoregulation during moderateintensity exercise. Can J Appl Physiol 1997; 22 (5): 479–93

    Article  PubMed  CAS  Google Scholar 

  27. Mundel T, King J, Collacott E, et al. Drink temperature influences fluid intake and endurance capacity in men during exercise in a hot, dry environment. Exp Physiol 2006; 91 (5): 925–33

    Article  PubMed  Google Scholar 

  28. Lee JK, Shirreffs SM, Maughan RJ. Cold drink ingestion improves exercise endurance capacity in the heat. Med Sci Sports Exerc 2008; 40 (9): 1637–44

    Article  PubMed  Google Scholar 

  29. Siegel R, Maté J, Brearley MB, et al. Ice slurry ingestion increases core temperature capacity and running time in the heat. Med Sci Sports Exerc 2010; 42 (4): 717–25

    Article  PubMed  Google Scholar 

  30. Merrick MA, Jutte LS, Smith ME. Cold modalities with different thermodynamic properties produce different surface and intramuscular temperatures. J Athl Train 2003; 38 (1): 28–33

    PubMed  Google Scholar 

  31. Vanden Hoek TL, Kasza KE, Beiser DG, et al. Induced hypothermia by central venous infusion: saline ice slurry versus chilled saline. Crit Care Med 2004; 32 (9): S425–31

    Article  Google Scholar 

  32. Siegel R, Maté J, Watson G, et al. Pre-cooling with ice slurry ingestion leads to similar run times to exhaustion in the heat as cold water immersion. J Sports Sci. In press

  33. Ross ML, Garvican LA, Jeacocke NA, et al. Novel precooling strategy enhances time trial cycling in the heat. Med Sci Sports Exerc 2011; 43 (1): 123–33

    Article  PubMed  Google Scholar 

  34. Ihsan M, Landers G, Brearley M, et al. Beneficial effects of ice ingestion as a precooling strategy on 40-km cycling time-trial performance. Int J Sports Physiol Perform 2010; 5 (2): 140–51

    PubMed  Google Scholar 

  35. Stanley J, Leveritt M, Peake JM. Thermoregulatory responses to ice-slush beverage ingestion and exercise in the heat. Eur J Appl Physiol 2010; 110 (6): 1163–73

    Article  PubMed  Google Scholar 

  36. Burdon C, O’Connor H, Gifford J, et al. Effect of drink temperature on core temperature and endurance cycling performance in warm, humid conditions. J Sports Sci 2010; 28 (11): 1147–56

    Article  PubMed  Google Scholar 

  37. Lee JK, Shirreffs. The influence of drink temperature on thermoregulatory responses during prolonged exercise in a moderate environment. J Sports Sci 2007; 25 (9): 975–85

    Article  PubMed  Google Scholar 

  38. Nielsen B, Hales JR, Strange S, et al. Human circulatory and thermoregulatory adaptations with heat acclimation and exercise in a hot, dry environment. J Physiol 1993; 460: 467–85

    PubMed  CAS  Google Scholar 

  39. Cheung SS, McLellan TM. Heat acclimation, aerobic fitness, and hydration effects on tolerance during uncompensable heat stress. J Appl Physiol 1998; 84 (5): 1731–9

    PubMed  CAS  Google Scholar 

  40. Caputa M, Feistkorn G, Jessen C. Effects of brain and trunk temperatures on exercise performance in goats. Pflugers Arch 1986; 406 (2): 184–9

    Article  PubMed  CAS  Google Scholar 

  41. Nybo L. Hyperthermia and fatigue. J Appl Physiol 2008; 104 (3): 871–8

    Article  PubMed  Google Scholar 

  42. Mariak Z, White MD, Lewko J, et al. Direct cooling of the human brain by heat loss from the upper respiratory tract. J Appl Physiol 1999; 87 (5): 1609–13

    PubMed  CAS  Google Scholar 

  43. Carithers RW, Seagrave RC. Canine hyperthermia with cerebral protection. J Appl Physiol 1976; 40 (4): 543–8

    PubMed  CAS  Google Scholar 

  44. Brengelmann GL. Specialized brain cooling in humans? FASEB J 1993; 7 (12):1148–52; discussion 1152-3

    PubMed  CAS  Google Scholar 

  45. Mitchell D, Maloney SK, Jessen C, et al. Adaptive heterothermy and selective brain cooling in arid-zone mammals. Comparative biochemistry and physiology: part B — biochemistry & molecular biology [research support, non-US Gov’t review]. CBP 2002; 131 (4): 571–85 [online]. Available from URL:(http://lsci.tamucc.edu/lsci/uploads/RThomas/Adaptive-Heterothermy-in-Mammals.pdf)[Accessed 2011 Oct 28]

    Article  Google Scholar 

  46. Moseley PL, Gapen C, Wallen ES, et al. Thermal stress induces epithelial permeability. Am J Physiol 1994; 267 (2 Pt1): C425–34

    PubMed  CAS  Google Scholar 

  47. Cheung SS, Sleivert GG. Multiple triggers for hyperthermic fatigueand exhaustion. Exerc Sport Sci Rev 2004; 32 (3): 100–6

    Article  PubMed  Google Scholar 

  48. Supinski G, Nethery D, Nosek TM, et al. Endotoxin administration alters the force vs. pCa relationship of skeletal muscle fibers. Am J Physiol Regul Integr Comp Physiol 2000; 278 (4): R891–6

    PubMed  CAS  Google Scholar 

  49. Lambert GP. Role of gastrointestinal permeability in exertional heatstroke. Exerc Sport Sci Rev 2004; 32 (4): 185–90

    Article  PubMed  Google Scholar 

  50. Benzinger TH. Heat regulation: homeostasis of central temperature in man. Physiol Rev 1969; 49 (4): 671–759

    PubMed  CAS  Google Scholar 

  51. Hensel H. Thermoreception and temperature regulation. New York (NY): Academic Press,1981

    Google Scholar 

  52. Thomas MM, Cheung SS, Elder GC, et al. Voluntary muscle activation is impaired by core temperature rather than local muscle temperature. J Appl Physiol 2006; 100 (4): 1361–9

    Article  PubMed  Google Scholar 

  53. El Ouazzani T, Mei N. Electrophysiologic properties and role of the vagal thermoreceptors of lower esophagus and stomach of cat. Gastroenterology 1982; 83 (5): 995–1001

    PubMed  Google Scholar 

  54. Cottrell DF. Cold-sensitive mechanoreceptors with afferent C-fibres in the sheep duodenum. Pflugers Arch 1984; 402 (4): 454–7

    Article  PubMed  CAS  Google Scholar 

  55. Gupta BN, Nier K, Hensel H. Cold-sensitive afferents from the abdomen. Pflugers Arch 1979; 380 (2): 203–4

    Article  PubMed  CAS  Google Scholar 

  56. Riedel W, Siaplauras G, Simon E. Intra-abdominal thermosensitivity in the rabbit as compared with spinal thermosensitivity. Pflugers Arch 1973; 340 (1): 59–70

    Article  PubMed  CAS  Google Scholar 

  57. Rawson RO, Quick KP. Evidence of deep-body thermoreceptor response to intra-abdominal heating of the ewe. J Appl Physiol 1970; 28 (6): 813–20

    PubMed  CAS  Google Scholar 

  58. Villanova N, Azpiroz F, Malagelada JR. Perception and gut reflexes induced by stimulation of gastrointestinal thermoreceptors in humans. J Physiol 1997; 502 (Pt 1): 215–22

    Article  PubMed  CAS  Google Scholar 

  59. Pallett JP, O’Brien MT. Textbook of neurological nursing. Toronto (ON): Little, Brown & Co. Ltd, 1985

    Google Scholar 

  60. Carter JM, Jeukendrup AE, Jones DA. The effect of carbohydrate mouth rinse on 1-h cycle time trial performance. Med Sci Sports Exerc 2004; 36 (12): 2107–11

    PubMed  CAS  Google Scholar 

  61. Chambers ES, Bridge MW, Jones DA. Carbohydrate sensing in the human mouth: effects on exercise performance and brain activity. J Physiol 2009; 587 (Pt 8): 1779–94

    Article  PubMed  CAS  Google Scholar 

  62. Pottier A, Bouckaert J, Gilis W, et al. Mouth rinse but not ingestion of a carbohydrate solution improves 1-h cycle time trial performance. Scand J Med Sci Sports 2010; 20 (1): 105–11

    Article  PubMed  CAS  Google Scholar 

  63. Rollo I, Cole M, Miller R, et al. The influence of mouthrinsing a carbohydrate solution on 1 hour running performance. Med Sci Sports Exerc 2010; 42 (4): 798–804

    Article  PubMed  CAS  Google Scholar 

  64. Rollo I, Williams C, Gant N, et al. The influence of carbohydrate mouth rinse on self-selected speeds during a 30-min treadmill run. Int J Sport Nutr Exerc Metab 2008; 18 (6): 585–600

    PubMed  CAS  Google Scholar 

  65. Siegel R, Mate J, Watson G, et al. The influence of ice slurry ingestion on maximal voluntary contraction following exercise-induced hyperthermia. Eur J Appl Physiol 2011; 111 (10): 2517–24

    Article  PubMed  Google Scholar 

  66. Peiffer JJ, Abbiss CR, Nosaka K, et al. Effect of cold water immersion after exercise in the heat on muscle function, body temperatures, and vessel diameter. J Sci Med Sport 2009; 12 (1): 91–6

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney Siegel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siegel, R., Laursen, P.B. Keeping Your Cool. Sports Med 42, 89–98 (2012). https://doi.org/10.2165/11596870-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11596870-000000000-00000

Keywords

Navigation