Skip to main content
Log in

Safety of Long-Term Bisphosphonate Therapy for the Management of Osteoporosis

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Drugs in the bisphosphonate class are the most commonly prescribed therapeutic agents for the treatment of osteoporosis. Prospective, randomized, placebo-controlled clinical trials have demonstrated efficacy in reducing fracture risk, with favourable safety profiles, in women with postmenopausal osteoporosis. However, long-term use in clinical practice has been associated with reports of undesirable events not previously recognized. These have included gastrointestinal intolerance, osteonecrosis of the jaw, atypical femur fractures, oesophageal cancer, atrial fibrillation and chronic musculoskeletal pain. Physicians must be alert to newly recognized safety concerns, understand the level of evidence supporting them and be able to effectively communicate the balance of expected benefit and potential risk to patients.

Usually, post-marketing adverse events are first presented as case reports or observational studies with variable levels of supporting evidence for plausibility, pathophysiology and causality. Widespread coverage in the news media, which can be alarming to patients and their physicians, may not present a balanced view of the proven benefits, the uncertain risks of therapy and the relative magnitude of these events. There may be confusion about the risks associated with bisphosphonate use for the treatment of osteoporosis versus treatment of other conditions, such as cancer, which typically involves a very different patient population and different doses or frequency of drug administration. Often reports of possible adverse events do not provide information on the number of patients exposed to the drug in proportion to the reported adverse event, or do not describe the incidence of the adverse event in a comparator population not exposed to the drug.

Gastrointestinal intolerance with oral bisphosphonates, and hypocalcaemia, acute phase reactions and renal toxicity with intravenous bisphosphonates are characterized by biological plausibility and demonstration of causality. Safety concerns with uncertain biological plausibility and unproven causality include osteonecrosis of the jaw, atypical femur fractures, oesophageal cancer and ocular inflammation. Suspected concerns that are unlikely to be causally related include atrial fibrillation and hepatotoxicity. When making the decision to use a bisphosphonate for the treatment of osteoporosis, the balance between benefit and potential risks according to clinical circumstances of each patient should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Table IV
Table V
Table VI

Similar content being viewed by others

References

  1. Klibanski A, Adams-Campbell L, Bassford T, et al. Osteoporosis prevention, diagnosis, and therapy. JAMA 2001; 285(6): 785–95

    Google Scholar 

  2. Cooper C, Campion G, Melton III LJ. Hip fractures in the elderly: a world-wide projection. Osteoporos Int 1992; 2(6): 285–9

    PubMed  CAS  Google Scholar 

  3. European Foundation for Osteoporosis and Bone Disease, National Osteoporosis Foundation. Who are candidates for prevention and treatment for osteoporosis? Osteoporos Int 1997; 7(1): 1–6

    Google Scholar 

  4. Center JR, Nguyen TV, Schneider D, et al. Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet 1999; 353(9156): 878–82

    PubMed  CAS  Google Scholar 

  5. Cooper C. The crippling consequences of fractures and their impact on quality of life. Am J Med 1997; 103(2A): 12S–9S

    PubMed  CAS  Google Scholar 

  6. Kanis JA, on behalf of the World Health Organization Scientific Group. Assessment of osteoporosis at the primary health-care level [technical report]. University of Sheffield, UK: World Health Organization Collaborating Centre for Metabolic Bone Diseases, 2007

    Google Scholar 

  7. MacLean C, Newberry S, Maglione M, et al. Systematic review: comparative effectiveness of treatments to prevent fractures in men and women with low bone density or osteoporosis. Ann Intern Med 2008; 148(3): 197–213

    PubMed  Google Scholar 

  8. Epstein S. Update of current therapeutic options for the treatment of postmenopausal osteoporosis. Clin Ther 2006; 28(2): 151–73

    PubMed  CAS  Google Scholar 

  9. Russell RG, Bisaz S, Fleisch H, et al. Inorganic pyrophosphate in plasma, urine, and synovial fluid of patients with pyrophosphate arthropathy (chondrocalcinosis or pseudogout). Lancet 1970; 2(7679): 899–902

    PubMed  CAS  Google Scholar 

  10. Russell RG, Watts NB, Ebetino FH, et al. Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int 2008; 19(6): 733–59

    PubMed  CAS  Google Scholar 

  11. Black DM, Delmas PD, Eastell R, et al. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 2007; 356(18): 1809–22

    PubMed  CAS  Google Scholar 

  12. Delmas PD, Adami S, Strugala C, et al. Intravenous ibandronate injections in postmenopausal women with osteoporosis: one-year results from the dosing intravenous administration study. Arthritis Rheum 2006; 54(6): 1838–46

    PubMed  CAS  Google Scholar 

  13. Recker RR, Lewiecki EM, Miller PD, et al. Safety of bisphosphonates in the treatment of osteoporosis. Am J Med 2009; 122 (2 Suppl.): S22–32

    PubMed  CAS  Google Scholar 

  14. Watts NB, Diab DL. Long-term use of bisphosphonates in osteoporosis. J Clin Endocrinol Metab 2010; 95(4): 1555–65

    PubMed  CAS  Google Scholar 

  15. Pazianas M, Abrahamsen B. Safety of bisphosphonates. Bone 2010; 43 Suppl.: 222–9

    Google Scholar 

  16. Lewiecki EM. Bisphosphonates for the treatment of osteoporosis: insights for clinicians. Ther Adv Chronic Dis 2010; 1(3): 115–28

    PubMed  CAS  Google Scholar 

  17. Lewiecki EM. Risk communication and shared decision making in the care of patients with osteoporosis. J Clin Densitom 2010; 13(4): 335–45

    PubMed  Google Scholar 

  18. Black DM, Thompson DE, Bauer DC, et al. Fracture risk reduction with alendronate in women with osteoporosis: the Fracture Intervention Trial. J Clin Endocrinol Metab 2000; 85(11): 4118–24

    PubMed  CAS  Google Scholar 

  19. Harris ST, Watts NB, Genant HK, et al. Effects of rise-dronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy with Risedronate Therapy (VERT) Study Group. JAMA 1999; 282(14): 1344–52

    CAS  Google Scholar 

  20. Chesnut III CH, Skag A, Christiansen C, et al. Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. J Bone Miner Res 2004; 19(8): 1241–9

    CAS  Google Scholar 

  21. Siris ES, Selby PL, Saag KG, et al. Impact of osteoporosis treatment adherence on fracture rates in North America and Europe. Am J Med 2009; 122 (2 Suppl.): S3–13

    PubMed  Google Scholar 

  22. Wilkes MM, Navickis RJ, Chan WW, et al. Bisphosphonates and osteoporotic fractures: a cross-design synthesis of results among compliant/persistent postmenopausal women in clinical practice versus randomized controlled trials. Osteoporos Int 2010; 21(4): 679–88

    PubMed  CAS  Google Scholar 

  23. Siris ES, Pasquale MK, Wang Y, et al. Estimating bisphosphonate use and fracture reduction among US women aged 45 years and older, 2001–2008. J Bone Miner Res 2011; 26(1): 3–11

    PubMed  Google Scholar 

  24. Lyles KW, Colon-Emeric CS, Magaziner JS, et al. Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med 2007; 357(18): 1799–809

    PubMed  CAS  Google Scholar 

  25. Beaupre LA, Morrish DW, Hanley DA, et al. Oral bisphosphonates are associated with reduced mortality after hip fracture. Osteoporos Int 2011; 22(3): 983–91

    PubMed  CAS  Google Scholar 

  26. Center JR, Bliuc D, Nguyen ND, et al. Osteoporosis medication and reduced mortality risk in elderly women and men. J Clin Endocrinol Metab. Epub 2011 Feb 2

  27. Cummings SR, San Martin J, McClung MR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 2009; 361(8): 756–65

    PubMed  CAS  Google Scholar 

  28. Peter CP, Handt LK, Smith SM. Esophageal irritation due to alendronate sodium tablets: possible mechanisms. Dig Dis Sci 1998; 43(9): 1998–2002

    PubMed  CAS  Google Scholar 

  29. Blank MA, Gibson GW, Myers WR, et al. Gastric damage in the rat with nitrogen-containing bisphosphonates depends on pH. Aliment Pharmacol Ther 2000; 14(9): 1215–23

    PubMed  CAS  Google Scholar 

  30. Cryer B, Bauer DC. Oral bisphosphonates and upper gastrointestinal tract problems: what is the evidence? Mayo Clin Proc 2002; 77(10): 1031–43

    PubMed  Google Scholar 

  31. Greenspan S, Field-Munves E, Tonino R, et al. Tolerability of once-weekly alendronate in patients with osteoporosis: a randomized, double-blind, placebo-controlled study. Mayo Clin Proc 2002; 77(10): 1044–52

    PubMed  CAS  Google Scholar 

  32. de Groen PC, Lubbe DF, Hirsch LJ, et al. Esophagitis associated with the use of alendronate. N Engl J Med 1996; 335: 1016–21

    PubMed  Google Scholar 

  33. Tosteson AN, Grove MR, Hammond CS, et al. Early discontinuation of treatment for osteoporosis. Am J Med 2003; 115(3): 209–16

    PubMed  Google Scholar 

  34. Ettinger B, Pressman A, Schein J, et al. Alendronate use among 812 women: prevalence of gastrointestinal complaints, noncompliance with patient instructions, and discontinuation. J Managed Care Pharm 1998; 4: 488–92

    Google Scholar 

  35. Ettinger B, Pressman A, Schein J. Clinic visits and hospital admissions for care of acid-related upper gastrointestinal disorders in women using alendronate for osteoporosis. Am J Man Care 1998; 4: 1377–82

    CAS  Google Scholar 

  36. Hamilton B, McCoy K, Taggart H. Tolerability and compliance with risedronate in clinical practice. Osteoporos Int 2003; 14(3): 259–62

    PubMed  CAS  Google Scholar 

  37. Strampel W, Emkey R, Civitelli R. Safety considerations with bisphosphonates for the treatment of osteoporosis. Drug Saf2007; 30(9): 755–63

    PubMed  CAS  Google Scholar 

  38. Bonnick S, Saag KG, Kiel DP, et al. Comparison of weekly treatment of postmenopausal osteoporosis with alendronate versus risedronate over two years. J Clin Endocrinol Metab 2006; 91(7): 2631–7

    PubMed  CAS  Google Scholar 

  39. Schnitzer TJ, Bone HG, Crepaldi G, et al. Alendronate 70 mg once weekly is therapeutically equivalent to alendronate 10 mg daily for treatment of postmenopausal osteoporosis. Aging Clin Exp Res 2000; 12: 1–12

    CAS  Google Scholar 

  40. Harris ST, Watts NB, Li Z, et al. Two-year efficacy and tolerability of risedronate once a week for the treatment of women with postmenopausal osteoporosis. Curr Med Res Opin 2004; 20(5): 757–64

    PubMed  CAS  Google Scholar 

  41. Miller PD, McClung MR, Macovei L, et al. Monthly oral ibandronate therapy in postmenopausal osteoporosis: 1-year results from the MOBILE study. J Bone Miner Res 2005; 20(8): 1315–22

    PubMed  CAS  Google Scholar 

  42. Delmas PD, McClung MR, Zanchetta JR, et al. Efficacy and safety of risedronate 150 mg once a month in the treatment of postmenopausal osteoporosis. Bone 2008; 42(1): 36–42

    PubMed  CAS  Google Scholar 

  43. Miller PD, Woodson G, Licata AA, et al. Rechallenge of patients who had discontinued alendronate therapy because of upper gastrointestinal symptoms. Clinical Therapeutics 2000; 22(12): 1433–42

    PubMed  CAS  Google Scholar 

  44. Adachi JD, Adami S, Miller PD, et al. Tolerability of risedronate in postmenopausal women intolerant of alendronate. Aging (Milano) 2001; 13(5): 347–54

    CAS  Google Scholar 

  45. Black DM, Cummings SR, Karpf DB, et al. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Lancet 1996; 348: 1535–41

    PubMed  CAS  Google Scholar 

  46. Wysowski DK. Reports of esophageal cancer with oral bisphosphonate use. N Engl J Med 2009; 360(1): 89–90

    PubMed  CAS  Google Scholar 

  47. Ryan JM, Kelsey P, Ryan BM, et al. Alendronate-induced esophagitis: case report of a recently recognized form of severe esophagitis with esophageal stricture-radiographic features. Radiology 1998; 206(2): 389–91

    PubMed  CAS  Google Scholar 

  48. Maconi G, Porro GB. Multiple ulcerative esophagitis caused by alendronate. Am J Gastroenterol 1995; 90: 1889–90

    PubMed  CAS  Google Scholar 

  49. Ribeiro A, DeVault KR, Wolfe III JT, et al. Alendronate-associated esophagitis: endoscopic and pathologic features. Gastrointest Endosc 1998; 47(6): 525–8

    PubMed  CAS  Google Scholar 

  50. Abraham SC, Cruz-Correa M, Lee LA, et al. Alendronate-associated esophageal injury: pathologic and endoscopic features. Mod Pathol 1999; 12(12): 1152–7

    PubMed  CAS  Google Scholar 

  51. Abrahamsen B, Eiken P, Eastell R. More on reports of esophageal cancer with oral bisphosphonate use [letter]. N Engl J Med 2009; 360(17): 1789

    PubMed  CAS  Google Scholar 

  52. Solomon DH, Patrick A, Brookhart MA. More on reports of esophageal cancer with oral bisphosphonate use [letter]. N Engl J Med 2009; 360(17): 1789–90

    PubMed  CAS  Google Scholar 

  53. Cardwell CR, Abnet CC, Cantwell MM, et al. Exposure to oral bisphosphonates and risk of esophageal cancer. JAMA 2010; 304(6): 657–63

    PubMed  CAS  Google Scholar 

  54. Green J, Czanner G, Reeves G, et al. Oral bisphosphonates and risk of cancer of oesophagus, stomach, and color-ectum: case-control analysis within a UK primary care cohort. BMJ 2010; 341: c4444

    PubMed  Google Scholar 

  55. Bundred NJ, Campbell ID, Davidson N, et al. Effective inhibition of aromatase inhibitor-associated bone loss by zoledronic acid in postmenopausal women with early breast cancer receiving adjuvant letrozole: ZO-FAST Study results. Cancer 2008; 112(5): 1001–10

    PubMed  CAS  Google Scholar 

  56. Hershman DL, McMahon DJ, Crew KD, et al. Zoledronic acid prevents bone loss in premenopausal women undergoing adjuvant chemotherapy for early-stage breast cancer. J Clin Oncol 2008; 26(29): 4739–45

    PubMed  CAS  Google Scholar 

  57. Smith MR, Eastham J, Gleason DM, et al. Randomized controlled trial of zoledronic acid to prevent bone loss in men receiving androgen deprivation therapy for non-metastatic prostate cancer. J Urol 2003; 169(6): 2008–12

    PubMed  CAS  Google Scholar 

  58. Cummings SR, Schwartz AV, Black DM. Alendronate and atrial fibrillation. N Engl J Med 2007; 356(18): 1895–6

    PubMed  CAS  Google Scholar 

  59. Karam R, Camm J, McClung M. Yearly zoledronic acid in postmenopausal osteoporosis. N Engl J Med 2007; 357(7): 712–3

    PubMed  CAS  Google Scholar 

  60. Lewiecki EM, Cooper C, Thompson E, et al. Ibandronate does not increase risk of atrial fibrillation in analysis of pivotal clinical trials. Int J Clin Pract 2010; 64(6): 821–6

    PubMed  CAS  Google Scholar 

  61. Heckbert SR, Li G, Cummings SR, et al. Use of alendronate and risk of incident atrial fibrillation in women. Arch Intern Med 2008; 168(8): 826–31

    PubMed  CAS  Google Scholar 

  62. Bunch TJ, Anderson JL, May HT, et al. Relation of bisphosphonate therapies and risk of developing atrial fibrillation. Am J Cardiol 2009; 103(6): 824–8

    PubMed  CAS  Google Scholar 

  63. Sorensen HT, Christensen S, Mehnert F, et al. Use of bisphosphonates among women and risk of atrial fibrillation and flutter: population based case-control study. BMJ 2008; 336(7648): 813–6

    PubMed  Google Scholar 

  64. Abrahamsen B, Eiken P, Brixen K. Atrial fibrillation in fracture patients treated with oral bisphosphonates. J Intern Med 2009; 265(5): 581–92

    PubMed  CAS  Google Scholar 

  65. Grosso A, Douglas I, Hingorani A, et al. Oral bisphosphonates and risk of atrial fibrillation and flutter in women: a self-controlled case-series safety analysis. PLoS One 2009; 4(3): e4720

    PubMed  Google Scholar 

  66. US Food and Drug Administration. Update of safety review follow-up to the October 1, 2007 early communication about the ongoing safety review of bisphosphonates [online]. Available from URL: http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/DrugSafetyInformationforHeathcareProfessionals/ucm136201.htm [Accessed 2010 Mar 24]

  67. Bounameaux HM, Schifferli J, Montani JP, et al. Renal failure associated with intravenous diphosphonates [letter]. Lancet 1983; 1(8322): 471

    PubMed  CAS  Google Scholar 

  68. O’Sullivan TL, Akbari A, Cadnapaphcorchai P. Acute renal failure associated with the administration of parenteral etidronate. Renal Failure 1994; 16: 767–73

    PubMed  Google Scholar 

  69. Body JJ, Pfister T, Bauss F. Preclinical perspectives on bisphosphonate renal safety. Oncologist 2005; 10 Suppl. 1: 3–7

    PubMed  CAS  Google Scholar 

  70. Adami S, Zamberlan N. Adverse effects of bisphosphonates: a comparative review. Drug Safety 1996; 14: 158–70

    PubMed  CAS  Google Scholar 

  71. Markowitz GS, Fine PL, Stack JI, et al. Toxic acute tubular necrosis following treatment with zoledronate (Zometa). Kidney Int 2003; 64(1): 281–9

    PubMed  CAS  Google Scholar 

  72. Markowitz GS, Appel GB, Fine PL, et al. Collapsing focal segmental glomerulosclerosis following treatment with high-dose pamidronate. J Am Soc Nephrol 2001; 12(6): 1164–72

    PubMed  CAS  Google Scholar 

  73. Lewiecki EM, Miller PD. Renal safety of intravenous bisphosphonates in the treatment of osteoporosis. Expert Opin Drug Saf 2007; 6(6): 663–72

    PubMed  CAS  Google Scholar 

  74. Lewiecki EM, Rudolph LA. Oral bisphosphonates for treatment of osteoporosis in elderly patients with impaired renal function [abstract]. J Bone Miner Res 2002; 17 Suppl. 2: S367

    Google Scholar 

  75. Miller PD, Roux C, Boonen S, et al. Safety and efficacy of risedronate in patients with age-related reduced renal function as estimated by the Cockcroft and Gault method: a pooled analysis of nine clinical trials. J Bone Miner Res 2005; 20(12): 2105–15

    PubMed  CAS  Google Scholar 

  76. Jamal SA, Bauer DC, Ensrud KE, et al. Alendronate treatment in women with normal to severely impaired renal function: an analysis of the fracture intervention trial. J Bone Miner Res 2007; 22(4): 503–8

    PubMed  CAS  Google Scholar 

  77. Perazella MA, Markowitz GS. Bisphosphonate nephrotoxicity. Kidney Int 2008; 74(11): 1385–93

    PubMed  CAS  Google Scholar 

  78. Bock O, Boerst H, Thomasius FE, et al. Common musculoskeletal adverse effects of oral treatment with once weekly alendronate and risedronate in patients with osteoporosis and ways for their prevention. J Musculoskelet Neuronal Interact 2007; 7(2): 144–8

    PubMed  CAS  Google Scholar 

  79. Thiebaud D, Sauty A, Burckhardt P, et al. An in vitro and in vivo study of cytokines in the acute-phase response associated with bisphosphonates. Calcif Tissue Int 1997; 61(5): 386–92

    PubMed  CAS  Google Scholar 

  80. Reid IR, Gamble GD, Mesenbrink P, et al. Characterization of and risk factors for the acute-phase response after zoledronic acid. J Clin Endocrinol Metab 2010; 95(9): 4380–7

    PubMed  CAS  Google Scholar 

  81. Bertoldo F, Pancheri S, Zenari S, et al. Serum 25-hydroxyvitamin D levels modulate the acute-phase response associated with the first nitrogen-containing bisphosphonate infusion. J Bone Miner Res 2010; 25(3): 447–54

    PubMed  CAS  Google Scholar 

  82. Hewitt RE, Lissina A, Green AE, et al. The bisphosphonate acute phase response: rapid and copious production of proinflammatory cytokines by peripheral blood gd T cells in response to aminobisphosphonates is inhibited by statins. Clin Exp Immunol 2005; 139(1): 101–11

    PubMed  CAS  Google Scholar 

  83. Jodrell DI, Iveson TJ, Smith IE. Symptomatic hypocalcemia after treatment with high-dose aminohydroxypropylidene diphosphonate [letter]. Lancet 1987; 1: 622

    PubMed  CAS  Google Scholar 

  84. Papapoulos SE, Harinck HI, Bijvoet OL, et al. Effects of decreasing serum calcium on circulating parathyroid hormone and vitamin D metabolites in normocalcaemic and hypercalcaemic patients treated with APD. Bone Miner 1986; 1(1): 69–78

    PubMed  CAS  Google Scholar 

  85. Chesnut III CH, McClung MR, Ensrud KE, et al. Alendronate treatment of the postmenopausal osteoporotic woman: effect of multiple dosages on bone mass and bone remodeling. Am J Med 1995; 99: 144–52

    PubMed  CAS  Google Scholar 

  86. Maalouf NM, Heller HJ, Odvina CV, et al. Bisphosphonate-induced hypocalcemia: report of 3 cases and review of literature. Endocr Pract 2006; 12(1): 48–53

    PubMed  Google Scholar 

  87. Kashyap AS, Kashyap S. Hypoparathyroidism unmasked by alendronate. Postgrad Med J 2000; 76(897): 417–8

    PubMed  CAS  Google Scholar 

  88. Kazmi AS, Wall BM. Reversible congestive heart failure related to profound hypocalcemia secondary to hypoparathyroidism. Am J Med Sci 2007; 333(4): 226–9

    PubMed  Google Scholar 

  89. Maclsaac RJ, Seeman E, Jerums G. Seizures after alendronate. J R Soc Med 2002; 95(12): 615–6

    PubMed  Google Scholar 

  90. Meek SE, Nix K. Hypocalcemia after alendronate therapy in a patient with celiac disease. Endocr Pract 2007; 13(4): 403–7

    PubMed  Google Scholar 

  91. Laitinen K, Taube T. Clodronate as a cause of aminotransferase elevation. Osteoporos Int 1999; 10(2): 120–2

    PubMed  CAS  Google Scholar 

  92. Halabe A, Lifschitz BM, Azuri J. Liver damage due to alendronate. N Eng J Med 2000; 343(5): 365–6

    CAS  Google Scholar 

  93. Carrere C, Duval JL, Godard B, et al. Severe acute hepatitis induced by alendronate [in French]. Gastroenterol Clin Biol 2002; 26(2): 179–80

    PubMed  Google Scholar 

  94. Lieverse RJ. Hepatitis after alendronate. Neth J Med 1998; 53(6): 271–2

    PubMed  CAS  Google Scholar 

  95. Yanik B, Turkay C, Atalar H. Hepatotoxicity induced by alendronate therapy. Osteoporos Int 2007; 18(6): 829–31

    PubMed  CAS  Google Scholar 

  96. de La Serna HC, Perez VA, Rodriguez GS, et al. Alendronate-induced hepatocellular lesion [in Spanish]. Gastroenterol Hepatol 2001; 24(5): 244–6

    Google Scholar 

  97. Phillips MB. Risedronate-induced hepatitis [letter]. Am J Med 2007; 120(3): e1–2

    PubMed  Google Scholar 

  98. Arase Y, Suzuki F, Suzuki Y, et al. Prolonged-efficacy of bisphosphonate in postmenopausal women with osteoporosis and chronic liver disease. J Med Virol 2008; 80(7): 1302–7

    PubMed  CAS  Google Scholar 

  99. Polyzos SA, Kountouras J, Anastasilakis AD, et al. Zoledronic acid-induced transient hepatotoxicity in a patient effectively treated for Paget’s disease of bone. Osteoporos Int 2011; 22(1): 363–7

    PubMed  CAS  Google Scholar 

  100. Misof BM, Bodingbauer M, Roschger P, et al. Short-term effects of high-dose zoledronic acid treatment on bone mineralization density distribution after orthotopic liver transplantation. Calcif Tissue Int 2008; 83(3): 167–75

    PubMed  CAS  Google Scholar 

  101. Crawford BA, Kam C, Pavlovic J, et al. Zoledronic acid prevents bone loss after liver transplantation: a randomized, double-blind, placebo-controlled trial. Ann Intern Med 2006; 144(4): 239–48

    PubMed  CAS  Google Scholar 

  102. Fraunfelder FW, Fraunfelder FT. Adverse ocular drug reactions recently identified by the National Registry of Drug-Induced Ocular Side Effects. Ophthalmology 2004; 111(7): 1275–9

    PubMed  CAS  Google Scholar 

  103. O’Donnell NP, Rao GP, Aguis-Fernandez A. Paget’s disease: ocular complications of disodium pamidronate treatment. Brit J Clin Pract 1995; 49: 272–3

    PubMed  Google Scholar 

  104. De S, Meyer P, Crisp AJ. Pamidronate and uveitis [letter]. Br J Rheumatol 1995; 34(5): 479

    PubMed  CAS  Google Scholar 

  105. Ghose K, Waterworth R, Trolove P, et al. Uveitis associated with pamidronate [letter]. Aust N Z J Med 1994; 24: 320

    PubMed  CAS  Google Scholar 

  106. Macarol V, Fraunfelder FT. Pamidronate disodium and possible ocular adverse drug reactions. Am J Ophthalmol 1994; 118: 220–4

    PubMed  CAS  Google Scholar 

  107. Fietta P, Manganelli P, Lodigiani L. Clodronate induced uveitis [letter]. Ann Rheum Dis 2003; 62(4): 378

    PubMed  CAS  Google Scholar 

  108. Malik AR, Campbell SH, Toma NMG. Bilateral acute anterior uveitis after alendronate [letter]. Br J Ophthalmol 2002; 86(12): 1443

    PubMed  CAS  Google Scholar 

  109. McKague M, Jorgenson D, Buxton KA. Ocular side effects of bisphosphonates: a case report and literature review. Can Fam Physician 2010; 56(10): 1015–7

    PubMed  Google Scholar 

  110. Tan YL, Sims J, Chee SP. Bilateral uveitis secondary to bisphosphonate therapy. Ophthalmologica 2009; 223(3): 215–6

    PubMed  CAS  Google Scholar 

  111. Moore MM, Beith JM. Acute unilateral anterior uveitis and scleritis following a single infusion of zoledronate for metastatic breast cancer. Med J Aust 2008; 188(6): 370–1

    PubMed  Google Scholar 

  112. Banal F, Briot K, Ayoub G, et al. Unilateral anterior uveitis complicating zoledronic acid therapy in prostate cancer. J Rheumatol 2008; 35(12): 2458–9

    PubMed  Google Scholar 

  113. Benderson D, Karakunnel J, Kathuria S, et al. Scleritis complicating zoledronic acid infusion. Clin Lymphoma Myeloma 2006; 7(2): 145–7

    PubMed  Google Scholar 

  114. Boniva (ibandronate sodium): US prescribing information. Genentech USA, Inc [online]. Available from URL: http://www.gene.com/gene/products/information/boniva/pdf/pi.pdf [Accessed 2011 Jan 22]

  115. French DD, Margo CE. Postmarketing surveillance rates of uveitis and scleritis with bisphosphonates among a national veteran cohort. Retina 2008; 28(6): 889–93

    PubMed  Google Scholar 

  116. Fraunfelder FW, Fraunfelder FT, Jensvold B. Scleritis and other ocular side effects associated with pamidronate disodium. Am J Ophthalmol 2003; 135(2): 219–22

    PubMed  CAS  Google Scholar 

  117. Sharma NS, Ooi JL, Masselos K, et al. Zoledronic acid infusion and orbital inflammatory disease. N Engl J Med 2008; 359(13): 1410–1

    PubMed  CAS  Google Scholar 

  118. Musette P, Brandi ML, Cacoub P, et al. Treatment of osteoporosis: recognizing and managing cutaneous adverse reactions and drug-induced hypersensitivity. Osteoporos Int 2010; 21(5): 723–32

    PubMed  CAS  Google Scholar 

  119. Biswas PN, Wilton LV, Shakir SA. Pharmacovigilance study of alendronate in England. Osteoporos Int 2003; 14(6): 507–14

    PubMed  CAS  Google Scholar 

  120. Kontoleon P, Ilias I, Stavropoulos PG, et al. Urticaria after administration of alendronate [letter]. Acta Dermato-Venereologica 2000; 80(5): 398

    PubMed  CAS  Google Scholar 

  121. High WA, Cohen JB, Wetherington W, et al. Superficial gyrate erythema as a cutaneous reaction to alendronate for osteoporosis. J Am Acad Dermatol 2003; 48(6): 945–6

    PubMed  Google Scholar 

  122. Brinkmeier T, Kugler K, Lepoittevin JP, et al. Adverse cutaneous drug reaction to alendronate. Contact Dermatitis 2007; 57(2): 123–5

    PubMed  Google Scholar 

  123. Schnyder B, Pichler WJ. Mechanisms of drug-induced allergy. Mayo Clin Proc 2009; 84(3): 268–72

    PubMed  Google Scholar 

  124. Patlas N, Golomb G, Yaffe P, et al. Transplacental effects of bisphosphonates on fetal skeletal ossification and mineralization in rats. Teratology 1999; 60(2): 68–73

    PubMed  CAS  Google Scholar 

  125. McKenzie AF, Budd RS, Yang C, et al. Technetium-99m-methylene diphosphonate uptake in the fetal skeleton at 30 weeks gestation. J Nucl Med 1994; 35(8): 1338–41

    PubMed  CAS  Google Scholar 

  126. Siminoski K, Fitzgerald AA, Flesch G, et al. Intravenous pamidronate for treatment of reflex sympathetic dystrophy during breast feeding. J Bone Miner Res 2000; 15(10): 2052–5

    PubMed  CAS  Google Scholar 

  127. Minsker DH, Manson JM, Peter CP. Effects of the bisphosphonate, alendronate, on parturition in the rat. Toxicol Appl Pharmacol 1993; 121(2): 217–23

    PubMed  CAS  Google Scholar 

  128. Djokanovic N, Klieger-Grossmann C, Koren G. Does treatment with bisphosphonates endanger the human pregnancy? J Obstet Gynaecol Can 2008; 30(12): 1146–8

    PubMed  Google Scholar 

  129. Weissenfeld J, Stock S, Lungen M, et al. The nocebo effect: a reason for patients’ non-adherence to generic substitution? Pharmazie 2010; 65(7): 451–6

    PubMed  CAS  Google Scholar 

  130. McLachlan AJ. Generic medicines literacy-minimising the potential for patient confusion. Med J Aust 2010; 192(7): 368–9

    PubMed  Google Scholar 

  131. Berg MJ, Gross RA, Tomaszewski KJ, et al. Generic substitution in the treatment of epilepsy: case evidence of breakthrough seizures. Neurology 2008; 71(7): 525–30

    PubMed  CAS  Google Scholar 

  132. Welty TE, Pickering PR, Hale BC, et al. Loss of seizure control associated with generic substitution of carbamazepine. Ann Pharmacother 1992; 26(6): 775–7

    PubMed  CAS  Google Scholar 

  133. Alvarez CA, Mascarenas C, Timmerman I. Increasing psychosis in a patient switched from clozaril to generic clozapine [letter]. Am J Psychiatry 2006; 163(4): 746

    PubMed  Google Scholar 

  134. Perkins AC, Blackshaw PE, Hay PD, et al. Esophageal transit and in vivo disintegration of branded risedronate sodium tablets and two generic formulations of alendronic acid tablets: a single-center, single-blind, six-period crossover study in healthy female subjects. Clin Ther 2008; 30(5): 834–44

    PubMed  CAS  Google Scholar 

  135. Epstein S, Cryer B, Ragi S, et al. Disintegration/dissolution profiles of copies of Fosamax (alendronate). Curr Med Res Opin 2003; 19(8): 781–9

    PubMed  CAS  Google Scholar 

  136. Shakweh M, Bravo-Osuna I, Ponchel G. Comparative in vitro study of oesophageal adhesiveness of different commercial formulations containing alendronate. Eur J Pharm Sci 2007; 31(5): 262–70

    PubMed  CAS  Google Scholar 

  137. Grima DT, Papaioannou A, Airia P, et al. Adverse events, bone mineral density and discontinuation associated with generic alendronate among postmenopausal women previously tolerant of brand alendronate: a retrospective cohort study. BMC Musculoskelet Disord 2010; 11: 68

    PubMed  Google Scholar 

  138. Ringe JD, Moller G. Differences in persistence, safety and efficacy of generic and original branded once weekly bisphosphonates in patients with postmenopausal osteoporosis: 1-year results of a retrospective patient chart review analysis. Rheumatol Int. Epub 2009 May 9

  139. Ralston SH, Kou TD, Wick-Urban B, et al. Risk of upper gastrointestinal tract events in risedronate users switched to alendronate. Calcif Tissue Int 2010; 87(4): 298–304

    PubMed  CAS  Google Scholar 

  140. Halkin H, Dushenat M, Silverman B, et al. Brand versus generic alendronate: gastrointestinal effects measured by resource utilization. Ann Pharmacother 2007; 41(1): 29–34

    PubMed  CAS  Google Scholar 

  141. Sheehy O, Kindundu CM, Barbeau M, et al. Differences in persistence among different weekly oral bisphosphonate medications. Osteoporos Int 2009; 20(8): 1369–76

    PubMed  CAS  Google Scholar 

  142. Marx RE. Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic. J Oral Maxillofac Surg 2003; 61(9): 1115–7

    PubMed  Google Scholar 

  143. Ruggiero SL, Mehrotra B, Rosenberg TJ, et al. Osteonecrosis of the jaws associated with the use of bisphosphonates: a review of 63 cases. J Oral Maxillofac Surg 2004; 62(5): 527–34

    PubMed  Google Scholar 

  144. Woo SB, Hellstein JW, Kalmar JR. Narrative [corrected] review: bisphosphonates and osteonecrosis of the jaws. Ann Intern Med 2006; 144(10): 753–61

    PubMed  CAS  Google Scholar 

  145. Sarathy AP, Bourgeois Jr SL, Goodell GG. Bisphosphonate-associated osteonecrosis of the jaws and endodontic treatment: two case reports. J Endod 2005; 31(10): 759–63

    PubMed  Google Scholar 

  146. Olson KB, Hellie CM, Pienta KJ. Osteonecrosis of jaw in patient with hormone-refractory prostate cancer treated with zoledronic acid 12 [letter]. Urology 2005; 66(3): 658

    PubMed  Google Scholar 

  147. Migliorati CA, Schubert MM, Peterson DE, et al. Bisphosphonate-associated osteonecrosis of mandibular and maxillary bone: an emerging oral complication of supportive cancer therapy. Cancer 2005; 104(1): 83–93

    PubMed  CAS  Google Scholar 

  148. Cartsos VM, Zhu S, Zavras AI. Bisphosphonate use and the risk of adverse jaw outcomes: a medical claims study of 714,217 people. J Am Dent Assoc 2008; 139(1): 23–30

    PubMed  Google Scholar 

  149. Lo JC, O’Ryan FS, Gordon NP, et al. Prevalence of osteonecrosis of the jaw in patients with oral bisphosphonate exposure. J Oral Maxillofac Surg 2010; 68(2): 243–53

    PubMed  Google Scholar 

  150. Mavrokokki T, Cheng A, Stein B, et al. Nature and frequency of bisphosphonate-associated osteonecrosis of the jaws in Australia. J Oral Maxillofac Surg 2007; 65(3): 415–23

    PubMed  Google Scholar 

  151. Khosla S, Burr D, Cauley J, et al. Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 2007; 22(10): 1479–89

    PubMed  Google Scholar 

  152. Marx RE, Sawatari Y, Fortin M, et al. Bisphosphonate-induced exposed bone (osteonecrosis/osteopetrosis) of the jaws: risk factors, recognition, prevention, and treatment. J Oral Maxillofac Surg 2005; 63(11): 1567–75

    PubMed  Google Scholar 

  153. Galluzzo S, Santini D, Vincenzi B, et al. Immunomodulating role of bisphosphonates on human gamma delta T cells: an intriguing and promising aspect of their antitumour activity. Expert Opin Ther Targets 2007; 11(7): 941–54

    PubMed  CAS  Google Scholar 

  154. Fournier P, Boissier S, Filleur S, et al. Bisphosphonates inhibit angiogenesis in vitro and testosterone-stimulated vascular regrowth in the ventral prostate in castrated rats. Cancer Res 2002; 62(22): 6538–44

    PubMed  CAS  Google Scholar 

  155. Hansen T, Kunkel M, Weber A, et al. Osteonecrosis of the jaws in patients treated with bisphosphonates-histomorphologic analysis in comparison with infected osteoradionecrosis. J Oral Pathol Med 2006; 35(3): 155–60

    PubMed  Google Scholar 

  156. Marx RE, Cillo Jr JE, Ulloa JJ. Oral bisphosphonate-induced osteonecrosis: risk factors, prediction of risk using serum CTX testing, prevention, and treatment. J Oral Maxillofac Surg 2007; 65(12): 2397–410

    PubMed  Google Scholar 

  157. Baim S, Miller PD. Assessing the clinical utility of serum CTX in postmenopausal osteoporosis and its use in predicting risk of osteonecrosis of the jaw. J Bone Miner Res 2009; 24(4): 561–74

    PubMed  CAS  Google Scholar 

  158. Ruggiero SL, Dodson TB, Assael LA, et al. American Association of Oral and Maxillofacial Surgeons position paper on bisphosphonate-related osteonecrosis of the jaws: 2009 update. J Oral Maxillofac Surg 2009; 67 (5 Suppl.): 2–12

    PubMed  Google Scholar 

  159. Cheung A, Seeman E. Teriparatide therapy for alendronate-associated osteonecrosis of the jaw. N Engl J Med 2010; 363(25): 2473–4

    PubMed  CAS  Google Scholar 

  160. Lee JJ, Cheng SJ, Jeng JH, et al. Successful treatment of advanced bisphosphonate-related osteonecrosis of the mandible with adjunctive teriparatide therapy. Head Neck. Epub 2010 Mar 22

  161. Lau AN, Adachi JD. Resolution of osteonecrosis of the jaw after teriparatide [recombinant human PTH-(1–34)] therapy. J Rheumatol 2009; 36(8): 1835–7

    PubMed  CAS  Google Scholar 

  162. Harper RP, Fung E. Resolution of bisphosphonate-associated osteonecrosis of the mandible: possible application for intermittent low-dose parathyroid hormone [rhPTH(1–34)]. J Oral Maxillofac Surg 2007; 65(3): 573–80

    PubMed  Google Scholar 

  163. Odvina CV, Zerwekh JE, Rao DS, et al. Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab 2005; 90(3): 1294–301

    PubMed  CAS  Google Scholar 

  164. Schneider JP. Should bisphosphonates be continued indefinitely? An unusual fracture in a healthy woman on long-term alendronate. Geriatrics 2006; 61(1): 31–3

    PubMed  Google Scholar 

  165. Lee P, van der Wall H, Seibel MJ. Looking beyond low bone mineral density: multiple insufficiency fractures in a woman with post-menopausal osteoporosis on alendronate therapy. J Endocrinol Invest 2007; 30(7): 590–7

    PubMed  CAS  Google Scholar 

  166. Goh SK, Yang KY, Koh JS, et al. Subtrochanteric insufficiency fractures in patients on alendronate therapy: a caution. J Bone Joint Surg Br 2007; 89(3): 349–53

    PubMed  Google Scholar 

  167. Neviaser AS, Lane JM, Lenart BA, et al. Low-energy femoral shaft fractures associated with alendronate use. J Orthop Trauma 2008; 22(5): 346–50

    PubMed  Google Scholar 

  168. Lenart BA, Neviaser AS, Lyman S, et al. Association of low-energy femoral fractures with prolonged bisphos-phonate use: a case control study. Osteoporos Int 2009; 20(8): 1353–62

    PubMed  CAS  Google Scholar 

  169. Armamento-Villareal R, Napoli N, Panwar V, et al. Suppressed bone turnover during alendronate therapy for high-turnover osteoporosis. N Engl J Med 2006; 355(19): 2048–50

    PubMed  CAS  Google Scholar 

  170. Lee P, Seibel MJ. More on atypical fractures of the femoral diaphysis. N Engl J Med 2008; 359(3): 317–8

    PubMed  CAS  Google Scholar 

  171. Kimmel DB, Recker RR, Gallagher JC, et al. A comparison of iliac bone histomorphometric data in post-menopausal osteoporotic and normal subjects. Bone Miner 1990; 11(2): 217–35

    PubMed  CAS  Google Scholar 

  172. Black DM, Kelly MP, Genant HK, et al. Bisphosphonates and fractures of the subtrochanteric or diaphyseal femur. N Engl J Med 2010; 362(19): 1761–71

    PubMed  CAS  Google Scholar 

  173. US Food and Drug Administration. FDA drug safety communication: ongoing safety review of oral bisphosphonates and atypical subtrochanteric femur fractures [online]. Available from URL: http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm203891.htm [Accessed 2011 Jan 21]

  174. Salminen S, Pihlajamaki H, Avikainen V, et al. Specific features associated with femoral shaft fractures caused by low-energy trauma. J Trauma 1997; 43(1): 117–22

    PubMed  CAS  Google Scholar 

  175. Nieves JW, Bilezikian JP, Lane JM, et al. Fragility fractures of the hip and femur: incidence and patient characteristics. Osteoporos Int 2010; 21(3): 399–408

    PubMed  CAS  Google Scholar 

  176. Abrahamsen B, Eiken P, Eastell R. Subtrochanteric and diaphyseal femur fractures in patients treated with alendronate: a register-based national cohort study. J Bone Miner Res 2009; 24(6): 1095–102

    PubMed  CAS  Google Scholar 

  177. Abrahamsen B, Eiken P, Eastell R. Cumulative alendronate dose and the long-term absolute risk of subtrochanteric and diaphyseal femur fractures: a register-based national cohort analysis. J Clin Endocrinol Metab 2010; 95(12): 5258–65

    PubMed  CAS  Google Scholar 

  178. Shane E, Burr D, Ebeling PR, et al. Atypical subtrochanteric and diaphyseal femoral fractures: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 2010; 25(11): 2267–94

    PubMed  Google Scholar 

  179. Visekruna M, Wilson D, McKiernan FE. Severely suppressed bone turnover and atypical skeletal fragility. J Clin Endocrinol Metab 2008; 93(8): 2948–52

    PubMed  CAS  Google Scholar 

  180. Wernecke G, Namdari S, Dicarlo EF, et al. Case report of spontaneous, nonspinal fractures in a multiple myeloma patient on long-term pamidronate and zoledronic acid. HSS J 2008; 4(2): 123–7

    PubMed  Google Scholar 

  181. Chintamaneni S, Finzel K, Gruber BL. Successful treatment of sternal fracture nonunion with teriparatide. Osteoporos Int 2010; 21(6): 1059–63

    PubMed  CAS  Google Scholar 

  182. Rubery PT, Bukata SV. Teriparatide may accelerate healing in delayed unions of type III odontoid fractures: a report of 3 cases. J Spinal Disord Tech 2010; 23(2): 151–5

    PubMed  Google Scholar 

  183. Aspenberg P, Genant HK, Johansson T, et al. Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double-blind study of 102 post-menopausal women with distal radial fractures. J Bone Miner Res 2010; 25(2): 404–14

    PubMed  CAS  Google Scholar 

  184. Wysowski DK, Chang JT. Alendronate and risedronate: reports of severe bone, joint, and muscle pain. Arch Intern Med 2005; 165(3): 346–7

    PubMed  Google Scholar 

  185. US Food and Drug Administration. Information for Healthcare Professionals: Bisphosphonates (marketed as Actonel, Actonel+Ca, Aredia, Boniva, Didronel, Fosamax, Fosamax+D, Reclast, Skelid, and Zometa) [online]. Available from URL: http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm124165.htm [Accessed 2011 Jan 21]

  186. Caplan L, Pittman CB, Zeringue AL, et al. An observational study of musculoskeletal pain among patients receiving bisphosphonate therapy. Mayo Clin Proc 2010; 85(4): 341–8

    PubMed  CAS  Google Scholar 

  187. Ringe JD, Body JJ. A review of bone pain relief with ibandronate and other bisphosphonates in disorders of increased bone turnover. Clin Exp Rheumatol 2007; 25(5): 766–74

    PubMed  CAS  Google Scholar 

  188. Strang P. Analgesic effect of bisphosphonates on bone pain in breast cancer patients. Acta Oncolog 1996; 35 Suppl. 5: 50–4

    Google Scholar 

  189. Pappagallo M, Breuer B, Schneider A, et al. Treatment of chronic mechanical spinal pain with intravenous pamidronate: a review of medical records. J Pain Symptom Manage 2003; 26(1): 678–83

    PubMed  CAS  Google Scholar 

  190. Glover D, Lipton A, Keller A, et al. Intravenous pamidronate disodium treatment of bone metastases in patients with breast cancer: a dose-seeking study. Cancer 1994; 74(11): 2949–55

    PubMed  CAS  Google Scholar 

  191. Armingeat T, Brondino R, Pham T, et al. Intravenous pamidronate for pain relief in recent osteoporotic vertebral compression fracture: a randomized double-blind controlled study. Osteoporos Int 2006; 17(11): 1659–65

    PubMed  CAS  Google Scholar 

  192. Goldhahn J, Little D, Mitchell P, et al. Evidence for antiosteoporosis therapy in acute fracture situations: recommendations of a multidisciplinary workshop of the International Society for Fracture Repair. Bone 2010; 46(2): 267–71

    PubMed  CAS  Google Scholar 

  193. Fleisch H. Can bisphosphonates be given to patients with fractures? J Bone Miner Res 2001; 16(3): 437–40

    PubMed  CAS  Google Scholar 

  194. McDonald MM, Dulai S, Godfrey C, et al. Bolus or weekly zoledronic acid administration does not delay endochondral fracture repair but weekly dosing enhances delays in hard callus remodeling. Bone 2008; 43(4): 653–62

    PubMed  CAS  Google Scholar 

  195. Bone HG, Hosking D, Devogelaer JP, et al. Ten years’ experience with alendronate for osteoporosis in postmeno-pausal women. N Engl J Med 2004; 350(12): 1189–99

    PubMed  CAS  Google Scholar 

  196. Eriksen EF, Lyles KW, Colon-Emeric CS, et al. Antifracture efficacy and reduction of mortality in relation to timing of first dose of zoledronic acid after hip fracture. J Bone Miner Res 2009; 24(7): 1308–13

    PubMed  CAS  Google Scholar 

  197. MacDonald MM, Schindeler A, Little DG. Bisphosphonate treatment and fracture repair [online]. Available from URL: http://www.bonekey-ibms.org/cgi/reprint/ibmske;4/9/236.pdf [Accessed 2011 Mar 11]

  198. Flora L, Hassing GS, Cloyd GG, et al. The long-term skeletal effects of EHDP in dogs. Metab Bone Dis Relat Res 1981; 3(4–5): 289–300

    PubMed  CAS  Google Scholar 

  199. Flora L, Hassing GS, Parfitt AM, et al. Comparative skeletal effects of two diphosphonates in dogs. Metab Bone Dis Relat Res 1980; 2: 389–407

    Google Scholar 

  200. Mashiba T, Hirano T, Turner CH, et al. Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res 2000; 15(4): 613–20

    PubMed  CAS  Google Scholar 

  201. Weinstein RS. Perspective: true strength. J Bone Miner Res 2000; 15: 621–5

    PubMed  CAS  Google Scholar 

  202. Waller PC, Evans SJ, Beard K. Drug safety and the media. Br J Clin Pharmacol 2006; 61(2): 123–6

    PubMed  Google Scholar 

  203. Sambrook PN, Chen JS, Simpson JM, et al. Impact of adverse news media on prescriptions for osteoporosis: effect on fractures and mortality. Med J Aust 2010; 193(3): 154–6

    PubMed  Google Scholar 

  204. Edwards A, Elwyn G. How should effectiveness of risk communication to aid patients’ decisions be judged? A review of the literature. Med Decis Making 1999; 19(4): 428–34

    PubMed  CAS  Google Scholar 

  205. Rothman AJ, Kiviniemi MT. Treating people with information: an analysis and review of approaches to communicating health risk information. J Natl Cancer Inst Monogr 1999; 25: 44–51

    PubMed  Google Scholar 

  206. Council for International Organizations of Medical Sciences Working Group IV. Benefit-risk balance for marketed drugs: evaluating safety signals. Report of CIOMS Working Group IV [online]. Available from URL: http://www.cioms.ch/publications/g4-benefit-risk.pdf [Accessed 2011 Jan 21]

  207. Ford S, Schofield T, Hope T. What are the ingredients for a successful evidence-based patient choice consultation? A qualitative study. Soc Sci Med 2003; 56(3): 589–602

    PubMed  Google Scholar 

Download references

Acknowledgements

The author has received grant/research support from Amgen, Merck, Eli Lilly, Novartis, Warner Chilcott, and Genentech. He has served as a consultant, advisory board member, speakers’ bureau participant, or given presentations at sponsored speaking events for Amgen, Eli Lilly, Novartis, Merck, Warner Chilcott and Genentech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Michael Lewiecki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewiecki, E.M. Safety of Long-Term Bisphosphonate Therapy for the Management of Osteoporosis. Drugs 71, 791–814 (2011). https://doi.org/10.2165/11585470-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11585470-000000000-00000

Keywords

Navigation