Skip to main content
Log in

Advances in the Pharmacological Management of Huntington’s Disease

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

There is inevitable physical, cognitive and behavioural decline in Huntington’s disease (HD), a dominantly inherited progressive neurological disorder. The hallmark of the disease is chorea, an involuntary brief movement that tends to flow between body regions. HD is diagnosed clinically with genetic confirmation. Predictive testing is available; however, it should be undertaken with caution in patients at risk for the disease but without clinical disease expression. Ongoing observational trials have identified not only early subtle motor signs, but also striatal volume, verbal memory and olfaction as possible early manifestations of clinical disease. Multiple areas of the brain degenerate, with dopamine, glutamate and GABA being the predominant neurotransmitters affected in HD. Although many pharmacotherapies have been evaluated targeting these neurotransmitters, few well conducted trials for symptomatic or neuroprotective interventions have yielded positive results. Tetrabenazine is one of the better studied and more effective agents for reducing chorea, although with a risk of potentially serious adverse effects. Newer antipsychotic agents such as olanzapine and aripiprazole may have adequate efficacy with a more favourable adverse-effect profile than older antipsychotics for treating chorea and psychosis. In this review, the pathogenesis, epidemiology and diagnosis of HD are discussed as background for understanding potential pharmacological treatment options. Potential strategies to delay the progression of HD that have been studied and are planned for the future are summarized. Although there is no current method to change the course of this devastating disease, education and symptomatic therapies are effective tools available to clinicians and the families affected by HD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1

Similar content being viewed by others

References

  1. The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993; 72(6): 971–83

    Article  Google Scholar 

  2. Nucifora Jr FC, Sasaki M, Peters MF, et al. Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 2001; 291(5512): 2423–8

    Article  PubMed  CAS  Google Scholar 

  3. Subramaniam S, Sixt KM, Barrow R, et al. Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity. Science 2009; 324(5932): 1327–30

    Article  PubMed  CAS  Google Scholar 

  4. Andrich J, Saft C, Ostholt N, et al. Complex movement behaviour and progression of Huntington’s disease. Neurosci Lett 2007; 416(3): 272–4

    Article  PubMed  CAS  Google Scholar 

  5. Frank S, Marshall F, Plumb S, et al. Functional decline due to chorea in Huntington’s disease. Neurology 2004; 62 Suppl. 5: A204

    Article  CAS  Google Scholar 

  6. Verhagen ML, Morris MJ, Farmer C, et al. Huntington’s disease: a randomized, controlled trial using the NMDA-antagonist amantadine. Neurology 2002; 59(5): 694–9

    Article  Google Scholar 

  7. Bates G. Huntingtin aggregation and toxicity in Huntington’s disease. Lancet 2003; 361(9369): 1642–4

    Article  PubMed  CAS  Google Scholar 

  8. Arrasate M, Mitra S, Schweitzer ES, et al. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 2004; 431(7010): 805–10

    Article  PubMed  CAS  Google Scholar 

  9. Glass M, Dragunow M, Faull RL. The pattern of neurodegeneration in Huntington’s disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience 2000; 97(3): 505–19

    Article  PubMed  CAS  Google Scholar 

  10. Albin RL, Reiner A, Anderson KD, et al. Preferential loss of striato-external pallidal projection neurons in pre-symptomatic Huntington’s disease. Ann Neurol 1992; 31(4): 425–30

    Article  PubMed  CAS  Google Scholar 

  11. Reiner A, Albin RL, Anderson KD, et al. Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci U S A 1988; 85(15): 5733–7

    Article  PubMed  CAS  Google Scholar 

  12. Mitchell IJ, Cooper AJ, Griffiths MR. The selective vulnerability of striatopallidal neurons. Prog Neurobiol 1999; 59(6): 691–719

    Article  PubMed  CAS  Google Scholar 

  13. Antonini A, Leenders KL, Spiegel R, et al. Striatal glucose metabolism and dopamine D2 receptor binding in asymptomatic gene carriers and patients with Huntington’s disease. Brain 1996; 119 (Pt 6): 2085–95

    Article  PubMed  Google Scholar 

  14. Augood SJ, Faull RL, Emson PC. Dopamine D1 and D2 receptor gene expression in the striatum in Huntington’s disease. Ann Neurol 1997; 42(2): 215–21

    Article  PubMed  CAS  Google Scholar 

  15. Feigin A, Tang C, Ma Y, et al. Thalamic metabolism and symptom onset in preclinical Huntington’s disease. Brain 2007; 130 (Pt 11): 2858–67

    Article  PubMed  CAS  Google Scholar 

  16. Andrews TC, Weeks RA, Turjanski N, et al. Huntington’s disease progression. PET and clinical observations. Brain 1999; 122 (Pt 12): 2353–63

    Article  PubMed  Google Scholar 

  17. Weeks RA, Piccini P, Harding AE, et al. Striatal D1 and D2 dopamine receptor loss in asymptomatic mutation carriers of Huntington’s disease. Ann Neurol 1996; 40(1): 49–54

    Article  PubMed  CAS  Google Scholar 

  18. Cha JH, Kosinski CM, Kerner JA, et al. Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human huntington disease gene. Proc Natl Acad Sci U S A 1998; 95(11): 6480–5

    Article  PubMed  CAS  Google Scholar 

  19. Perry TL, Hansen S, Kloster M. Huntington’s chorea. Deficiency of gamma-aminobutyric acid in brain. N Engl J Med 1973; 288(7): 337–42

    CAS  Google Scholar 

  20. Paulsen JS. Functional imaging in Huntington’s disease. Exp Neurol 2009; 216(2): 272–7

    Article  PubMed  Google Scholar 

  21. Gourfinkel-An I, Parain K, Hartmann A, et al. Changes in GAD67 mRNA expression evidenced by in situ hybridization in the brain of R6/2 transgenic mice. J Neurochem 2003; 86(6): 1369–78

    Article  PubMed  CAS  Google Scholar 

  22. Nicniocaill B, Haraldsson B, Hansson O, et al. Altered striatal amino acid neurotransmitter release monitored using microdialysis in R6/1 Huntington transgenic mice. Eur J Neurosci 2001; 13(1): 206–10

    Article  PubMed  CAS  Google Scholar 

  23. Harper PS. The epidemiology of Huntington’s disease. Hum Genet 1992; 89(4): 365–76

    Article  PubMed  CAS  Google Scholar 

  24. Morrison PJ, Johnston WP, Nevin NC. The epidemiology of Huntington’s disease in Northern Ireland. J Med Genet 1995; 32(7): 524–30

    Article  PubMed  CAS  Google Scholar 

  25. Peterlin B, Kobal J, Teran N, et al. Epidemiology of Huntington’s disease in Slovenia. Acta Neurol Scand 2009; 119(6): 371–5

    Article  PubMed  CAS  Google Scholar 

  26. Simpson SA, Johnston AW. The prevalence and patterns of care of Huntington’s chorea in Grampian. Br J Psychiatry 1989; 155: 799–804

    Article  PubMed  CAS  Google Scholar 

  27. Penney Jr JB, Young AB, Shoulson I, et al. Huntington’s disease in Venezuela: 7 years of follow-up on symptomatic and asymptomatic individuals. Mov Disord 1990; 5(2): 93–9

    Article  PubMed  Google Scholar 

  28. Ribai P, Nguyen K, Hahn-Barma V, et al. Psychiatric and cognitive difficulties as indicators of juvenile huntington disease onset in 29 patients. Arch Neurol 2007; 64(6): 813–9

    Article  PubMed  Google Scholar 

  29. Biglan KM, Ross CA, Langbehn DR, et al., PREDICT-HD Investigators of the Huntington Study Group. Motor abnormalities in premanifest persons with Huntington’s disease: the PREDICT-HD study. Mov Disord 2009 Sep 15; 24(12): 1763–72

    Article  PubMed  Google Scholar 

  30. Tabrizi SJ, Langbehn DR, Leavitt BR, et al., TRACK-HD investigators. Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol 2009 Sep; 8(9): 791–801

    Article  PubMed  Google Scholar 

  31. Huntington Study Group PHAROS Investigators (Shoulson I, primary author). At risk for Huntington’s disease: the PHAROS (Prospective Huntington at risk observational study) cohort enrolled. Arch Neurol 2006; 63: 991–8

    Article  Google Scholar 

  32. Huntington Study Group. Cooperative Huntington’s Observational Research Trial [ClinicalTrials.gov identifier NCT00313495]. US National Institutes of Health. Clinical Trials.gov [online]. Available from URL: http://www.clinicaltrials.gov [Accessed 2010 Jan 26]

  33. Solomon AC, Stout JC, Johnson SA, et al., Predict-HD investigators of the Huntington Study Group. Verbal episodic memory declines prior to diagnosis in Huntington’s disease. Neuropsychologia 2007 Apr 9; 45(8): 1767–76

    Article  PubMed  Google Scholar 

  34. Johnson SA, Stout JC, Solomon AC, et al., Predict-HD Investigators of the Huntington Study Group. Beyond disgust: impaired recognition of negative emotions prior to diagnosis in Huntington’s disease. Brain 2007 Jul; 130 (Pt 7): 1732–44

    Article  PubMed  Google Scholar 

  35. Paulsen JS, Langbehn DR, Stout JC, et al., Predict-HD Investigators and Coordinators of the Huntington Study Group. Detection of Huntington’s disease decades before diagnosis: the Predict-HD study. J Neurol Neurosurg Psychiatry 2008 Aug; 79(8): 874–80

    Article  PubMed  CAS  Google Scholar 

  36. Duff K, Paulsen JS, Beglinger LJ, et al., Predict-HD Investigators of the Huntington Study Group. Psychiatric symptoms in Huntington’s disease before diagnosis: the Predict-HD study. Biol Psychiatry 2007 Dec 15; 62(12): 1341–6

    Article  PubMed  Google Scholar 

  37. Huntington Study Group. Unified Huntington’s Disease Rating Scale: reliability and consistency. Mov Disord 1996; 11(2): 136–42

    Article  Google Scholar 

  38. The American College of Medical Genetics/American Society of Human Genetics Huntington Disease Genetic Testing Working Group. ACMG/ASHG statement. Laboratory guidelines for Huntington disease genetic testing. Am J Hum Genet 1998; 62(5): 1243–7

    Google Scholar 

  39. Andrich J, Arning L, Wieczorek S, et al. Huntington’s disease as caused by 34 CAG repeats. Mov Disord 2008; 23(6): 879–81

    Article  PubMed  Google Scholar 

  40. Kenney C, Powell S, Jankovic J. Autopsy-proven Huntington’s disease with 29 trinucleotide repeats. Mov Disord 2007; 22(1): 127–30

    Article  PubMed  Google Scholar 

  41. Snell RG, MacMillan JC, Cheadle JP, et al. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington’s disease. Nat Genet 1993; 4(4): 393–7

    Article  PubMed  CAS  Google Scholar 

  42. Di ML, Squitieri F, Napolitano G, et al. Suicide risk in Huntington’s disease. J Med Genet 1993; 30(4): 293–5

    Article  Google Scholar 

  43. Adam OR, Jankovic J. Symptomatic treatment of Huntington disease. Neurotherapeutics 2008; 5(2): 181–97

    Article  PubMed  CAS  Google Scholar 

  44. Phillips W, Shannon KM, Barker RA. The current clinical management of Huntington’s disease. Mov Disord 2008; 23(11): 1491–504

    Article  PubMed  Google Scholar 

  45. Roze E, Saudou F, Caboche J. Pathophysiology of Huntington’s disease: from huntingtin functions to potential treatments. Curr Opin Neurol 2008; 21(4): 497–503

    Article  PubMed  CAS  Google Scholar 

  46. Imarisio S, Carmichael J, Korolchuk V, et al. Huntington’s disease: from pathology and genetics to potential therapies. Biochem J 2008; 412: 191–209

    Article  PubMed  CAS  Google Scholar 

  47. Walker FO. Huntington’s disease. Lancet 2007; 369(9557): 218–28

    Article  PubMed  CAS  Google Scholar 

  48. Jankovic J. Treatment of hyperkinetic movement disorders. Lancet Neurol 2009; 8(9): 844–56

    Article  PubMed  CAS  Google Scholar 

  49. Bonelli RM, Wenning GK. Pharmacological management of Huntington’s disease: an evidence-based review. Curr Pharm Des 2006; 12(21): 2701–20

    Article  PubMed  CAS  Google Scholar 

  50. Nakamura K, Aminoff MJ. Huntington’s disease: clinical characteristics, pathogenesis and therapies. Drugs Today (Barc) 2007; 43(2): 97–116

    Article  CAS  Google Scholar 

  51. Handley OJ, Naji JJ, Dunnett SB, et al. Pharmaceutical, cellular and genetic therapies for Huntington’s disease. Clin Sci (Lond) 2006; 110(1): 73–88

    Article  CAS  Google Scholar 

  52. Bonelli RM, Hofmann P. A review of the treatment options for Huntington’s disease. Expert Opin Pharmacother 2004; 5(4): 767–76

    Article  PubMed  CAS  Google Scholar 

  53. Grimbergen YA, Roos RA. Therapeutic options for Huntington’s disease. Curr Opin Investig Drugs 2003; 4(1): 51–4

    PubMed  CAS  Google Scholar 

  54. Bagchi SP. Differential interactions of phencyclidine with tetrabenazine and reserpine affecting intraneuronal dopamine. Biochem Pharmacol 1983; 32(19): 2851–6

    Article  PubMed  CAS  Google Scholar 

  55. Pettibone DJ, Pflueger AB, Totaro JA. Tetrabenazine-induced depletion of brain monoamines: mechanism by which desmethylimipramine protects cortical norepinephrine. Eur J Pharmacol 1984; 102(3-4): 431–6

    Article  PubMed  CAS  Google Scholar 

  56. Mehvar R, Jamali F. Concentration-effect relationships of tetrabenazine and dihydrotetrabenazine in the rat. J Pharm Sci 1987; 76(6): 461–5

    Article  PubMed  CAS  Google Scholar 

  57. Thibaut F, Faucheux BA, Marquez J, et al. Regional distribution of monoamine vesicular uptake sites in the mesencephalon of control subjects and patients with Parkinson’s disease: a postmortem study using tritiated tetrabenazine. Brain Res 1995; 692(1–2): 233–43

    Article  PubMed  CAS  Google Scholar 

  58. Kenney C, Hunter C, Davidson A, et al. Short-term effects of tetrabenazine on chorea associated with Huntington’s disease. Mov Disord 2007; 22(1): 10–3

    Article  PubMed  Google Scholar 

  59. Scherman D, Henry JP. Reserpine binding to bovine chromaffin granule membranes. Characterization and comparison with dihydrotetrabenazine binding. Mol Pharmacol 1984; 25(1): 113–22

    CAS  Google Scholar 

  60. Mehvar R, Jamali F, Watson MW, et al. Pharmacokinetics of tetrabenazine and its major metabolite in man and rat. Bioavailability and dose dependency studies. Drug Metab Dispos 1987; 15(2): 250–5

    CAS  Google Scholar 

  61. Roberts MS, Watson HM, McLean S, et al. Determination of therapeutic plasma concentrations of tetrabenazine and an active metabolite by high-performance liquid chromatography. J Chromatogr 1981; 226(1): 175–82

    Article  PubMed  CAS  Google Scholar 

  62. Roberts MS, McLean S, Millingen KS, et al. The pharmacokinetics of tetrabenazine and its hydroxy metabolite in patients treated for involuntary movement disorders. Eur J Clin Pharmacol 1986; 29(6): 703–8

    Article  PubMed  CAS  Google Scholar 

  63. Huntington Study Group. Tetrabenazine as antichorea therapy in Huntington disease: a randomized controlled trial. Neurology 2006; 66(3): 366–72

    Article  CAS  Google Scholar 

  64. Jankovic J, Beach J. Long-term effects of tetrabenazine in hyperkinetic movement disorders. Neurology 1997; 48(2): 358–62

    Article  PubMed  CAS  Google Scholar 

  65. Kenney C, Hunter C, Jankovic J. Long-term tolerability of tetrabenazine in the treatment of hyperkinetic movement disorders. Mov Disord 2007; 22(2): 193–7

    Article  PubMed  Google Scholar 

  66. Fasano A, Cadeddu F, Guidubaldi A, et al. The long-term effect of tetrabenazine in the management of Huntington disease. Clin Neuropharmacol 2008; 31(6): 313–8

    Article  PubMed  CAS  Google Scholar 

  67. Huntington Study Group/Tetra-HD Investigators. Tetrabenazine as anti-chorea therapy in Huntington disease: an open-label continuation study. BMC Neurol 2009 Dec 18; 9: 62

    Article  CAS  Google Scholar 

  68. Quinn N, Marsden CD. A double blind trial of sulpiride in Huntington’s disease and tardive dyskinesia. J Neurol Neurosurg Psychiatry 1984; 47(8): 844–7

    Article  PubMed  CAS  Google Scholar 

  69. Deroover J, Baro F, Bourguignon RP, et al. Tiapride versus placebo: a double-blind comparative study in the management of Huntington’s chorea. Curr Med Res Opin 1984; 9(5): 329–38

    Article  PubMed  CAS  Google Scholar 

  70. Leonard DP, Kidson MA, Brown JG, et al. A double blind trial of lithium carbonate and haloperidol in Huntington’s chorea. Aust N Z J Psychiatry 1975; 9(2): 115–8

    Article  PubMed  CAS  Google Scholar 

  71. Barr AN, Fischer JH, Koller WC, et al. Serum haloperidol concentration and choreiform movements in Huntington’s disease. Neurology 1988; 38(1): 84–8

    Article  PubMed  CAS  Google Scholar 

  72. Bonelli RM, Mahnert FA, Niederwieser G. Olanzapine for Huntington’s disease: an open label study. Clin Neuropharmacol 2002; 25(5): 263–5

    Article  PubMed  CAS  Google Scholar 

  73. Bonelli RM, Niederwieser G, Tribl GG, et al. High-dose olanzapine in Huntington’s disease. Int Clin Psychopharmacol 2002; 17(2): 91–3

    Article  PubMed  CAS  Google Scholar 

  74. Paleacu D, Anca M, Giladi N. Olanzapine in Huntington’s disease. Acta Neurol Scand 2002; 105(6): 441–4

    Article  PubMed  CAS  Google Scholar 

  75. Squitieri F, Cannella M, Piorcellini A, et al. Short-term effects of olanzapine in Huntington disease. Neuropsychiatry Neuropsychol Behav Neurol 2001; 14(1): 69–72

    PubMed  CAS  Google Scholar 

  76. Dipple HC. The use of olanzapine for movement disorder in Huntington’s disease: a first case report. J Neurol Neurosurg Psychiatry 1999; 67(1): 123–4

    Article  PubMed  CAS  Google Scholar 

  77. Cankurtaran ES, Ozalp E, Soygur H, et al. Clinical experience with risperidone and memantine in the treatment of Huntington’s disease. J Natl Med Assoc 2006; 98(8): 1353–5

    PubMed  Google Scholar 

  78. Erdemoglu AK, Boratav C. Risperidone in chorea and psychosis of Huntington’s disease. Eur J Neurol 2002; 9(2): 182–3

    Article  PubMed  Google Scholar 

  79. Madhusoodanan S, Brenner R. Use of risperidone in psychosis associated with Huntington’s disease. Am J Geriatr Psychiatry 1998; 6(4): 347–9

    PubMed  CAS  Google Scholar 

  80. Parsa MA, Szigethy E, Voci JM, et al. Risperidone in treatment of choreoathetosis of Huntington’s disease. J Clin Psychopharmacol 1997; 17(2): 134–5

    Article  PubMed  CAS  Google Scholar 

  81. Alpay M, Koroshetz WJ. Quetiapine in the treatment of behavioral disturbances in patients with Huntington’s disease. Psychosomatics 2006; 47(1): 70–2

    Article  PubMed  Google Scholar 

  82. Seitz DP, Millson RC. Quetiapine in the management of psychosis secondary to Huntington’s disease: a case report. Can J Psychiatry 2004; 49(6): 413

    PubMed  Google Scholar 

  83. Bonelli RM, Niederwieser G. Quetiapine in Huntington’s disease: a first case report. J Neurol 2002; 249(8): 1114–5

    Article  PubMed  Google Scholar 

  84. van Vugt JP, Siesling S, Vergeer M, et al. Clozapine versus placebo in Huntington’s disease: a double blind randomised comparative study. J Neurol Neurosurg Psychiatry 1997; 63(1): 35–9

    Article  PubMed  Google Scholar 

  85. Ciammola A, Sassone J, Colciago C, et al. Aripiprazole in the treatment of Huntington’s disease: a case series. Neuropsychiatr Dis Treat 2009; 5: 1–4

    PubMed  CAS  Google Scholar 

  86. Brusa L, Orlacchio A, Moschella V, et al. Treatment of the symptoms of Huntington’s disease: preliminary results comparing aripiprazole and tetrabenazine. Mov Disord 2009; 24(1): 126–9

    Article  PubMed  Google Scholar 

  87. Lin WC, Chou YH. Aripiprazole effects on psychosis and chorea in a patient with Huntington’s disease. Am J Psychiatry 2008; 165(9): 1207–8

    Article  PubMed  Google Scholar 

  88. Lucetti C, Gambaccini G, Bernardini S, et al. Amantadine in Huntington’s disease: open-label video-blinded study. Neurol Sci 2002; 23 Suppl. 2: S83–4

    Article  PubMed  Google Scholar 

  89. Stewart JT. Adverse behavioral effects of amantadine therapy in Huntington’s disease. South Med J 1987; 80(10): 1324–5

    Article  PubMed  CAS  Google Scholar 

  90. Dosage effects of riluzole in Huntington’s disease: a multicenter placebo-controlled study. Neurology 2003; 61(11): 1551–6

    Article  Google Scholar 

  91. Landwehrmeyer GB, Dubois B, de Yebenes JG, et al. Riluzole in Huntington’s disease: a 3-year, randomized controlled study. Ann Neurol 2007; 62(3): 262–72

    Article  PubMed  CAS  Google Scholar 

  92. Peiris JB, Boralessa H, Lionel ND. Clonazepam in the treatment of choreiform activity. Med J Aust 1976; 1(8): 225–7

    PubMed  CAS  Google Scholar 

  93. Frattola L, Albizzati MG, Alemani A, et al. Acute treatment of Huntington’s chorea with lisuride. J Neurol Sci 1983; 59(2): 247–53

    Article  PubMed  CAS  Google Scholar 

  94. Vitale C, Marconi S, Di ML, et al. Short-term continuous infusion of apomorphine hydrochloride for treatment of Huntington’s chorea: a double blind, randomized crossover trial. Mov Disord 2007; 22(16): 2359–64

    Article  PubMed  Google Scholar 

  95. Corsini GU, Onali P, Masala C, et al. Apomorphine hydrochloride-induced improvement in Huntington’s chorea: stimulation of dopamine receptor. Arch Neurol 1978; 35(1): 27–30

    Article  PubMed  CAS  Google Scholar 

  96. Low PA, Allsop JL, Halmagyi GM. Huntington’s chorea: the rigid form (Westphal variant) treated with levodopa. Med J Aust 1974; 1(11): 393–4

    PubMed  CAS  Google Scholar 

  97. Low PA, Allsop JL. Huntington’s chorea-the rigid form (Westphal variant) treated with l-DOPA: a case report. Proc Aust Assoc Neurol 1973; 10(0): 45–6

    PubMed  CAS  Google Scholar 

  98. Magnet MK, Bonelli RM, Kapfhammer HP. Amantadine in the akinetic-rigid variant of Huntington’s disease. Ann Pharmacother 2004; 38(7–8): 1194–6

    PubMed  Google Scholar 

  99. Bonelli RM, Niederwieser G, Diez J, et al. Pramipexole ameliorates neurologic and psychiatric symptoms in a Westphal variant of Huntington’s disease. Clin Neuropharmacol 2002; 25(1): 58–60

    Article  PubMed  Google Scholar 

  100. Tan EK, Jankovic J, Ondo W. Bruxism in Huntington’s disease. Mov Disord 2000; 15(1): 171–3

    Article  PubMed  CAS  Google Scholar 

  101. Beal MF, Ferrante RJ. Experimental therapeutics in transgenic mouse models of Huntington’s disease. Nat Rev Neurosci 2004; 5(5): 373–84

    Article  PubMed  CAS  Google Scholar 

  102. Hersch SM, Ferrante RJ. Translating therapies for Huntington’s disease from genetic animal models to clinical trials. NeuroRx 2004; 1(3): 298–306

    Article  PubMed  Google Scholar 

  103. Hersch SM, Gevorkian S, Marder K, et al. Creatine in Huntington disease is safe, tolerable, bioavailable in brain and reduces serum 8OH2'dG. Neurology 2006; 66(2): 250–2

    Article  PubMed  CAS  Google Scholar 

  104. Huntington Study Group. A randomized, placebo-controlled trial of coenzyme Q10 and remacemide in Huntington’s disease. Neurology 2001; 57(3): 397–404

    Google Scholar 

  105. Curtis A, Rickards H. Nabilone could treat chorea and irritability in Huntington’s disease. J Neuropsychiatry Clin Neurosci 2006; 18(4): 553–4

    Article  PubMed  Google Scholar 

  106. Consroe P, Laguna J, Allender J, et al. Controlled clinical trial of cannabidiol in Huntington’s disease. Pharmacol Biochem Behav 1991; 40(3): 701–8

    Article  PubMed  CAS  Google Scholar 

  107. Muller-Vahl KR, Schneider U, Emrich HM. Nabilone increases choreatic movements in Huntington’s disease. Mov Disord 1999; 14(6): 1038–40

    Article  PubMed  CAS  Google Scholar 

  108. Mestre T, Ferreira J, Coelho MM, et al. Therapeutic interventions for disease progression in Huntington’s disease. Cochrane Database Syst Rev 2009; (3): CD006455

  109. Massachusetts General Hospital. Creatine Safety and Tolerability in Premanifest HD [ClinicalTrials.gov identifier NCT00592995]. US National Institutes of Health. Clinical Trials.gov [online]. Available from URL: http://www.clinicaltrials.gov [Accessed 2010 Jan 26]

  110. Hersch SM, Rosas HD. Neuroprotection for Huntington’s disease: ready, set, slow. Neurotherapeutics 2008; 5(2): 226–36

    Article  PubMed  Google Scholar 

  111. Tedroff J, Ekesbo A, Sonesson C, et al. Long-lasting improvement following (−)-OSU6162 in a patient with Huntington’s disease. Neurology 1999; 53(7): 1605–6

    Article  PubMed  CAS  Google Scholar 

  112. Huntington Study Group TREND-HD Investigators. Randomized controlled trial of ethyl-eicosapentaenoic acid in Huntington disease: the TREND-HD study. Arch Neurol 2008; 65(12): 1582–9

    Article  Google Scholar 

  113. Huntington Study Group. PHEND-HD: a safety, tolerability, and biomarker study of phenylbutyrate in symptomatic HD [abstract]. Neurotherapeutics 2008; 5(2): 363

    Google Scholar 

  114. Huntington Study Group. A phase 2 trial of minocycline in Huntington’s disease [abstract]. Mov Disord 2009; 24 Suppl. 1: S164

    Google Scholar 

  115. Yang L, Calingasan NY, Wille EJ, et al. Combination therapy with coenzyme Q10 and creatine produces additive neuroprotective effects in models of Parkinson’s and Huntington’s diseases. J Neurochem 2009; 109(5): 1427–39

    Article  PubMed  CAS  Google Scholar 

  116. Pan T, Kondo S, Le W, et al. The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson’s disease. Brain 2008; 131 (Pt 8): 1969–78

    Article  PubMed  Google Scholar 

  117. Mostert JP, Koch MW, Heerings M, et al. Therapeutic potential of fluoxetine in neurological disorders. CNS Neurosci Ther 2008; 14(2): 153–64

    Article  PubMed  CAS  Google Scholar 

  118. US National Institutes of Health. ClinicalTrials.gov [online]. Available from URL: http://www.clinicaltrials.gov [Accessed 2010 Jan 26]

  119. Kieburtz K, McDermott MP, Voss TS, et al. A randomized, placebo-controlled trial of latrepirdine in Huntington disease. Arch Neurol 2010; 67(2): 154–60

    Article  PubMed  Google Scholar 

  120. Wang X, Zhu S, Pei Z, et al. Inhibitors of cytochrome c release with therapeutic potential for Huntington’s disease. J Neurosci 2008; 28(38): 9473–85

    Article  PubMed  CAS  Google Scholar 

  121. Graham RK, Deng Y, Slow EJ, et al. Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell 2006; 125(6): 1179–91

    Article  PubMed  CAS  Google Scholar 

  122. Kaltenbach LS, Romero E, Becklin RR, et al. Huntingtin interacting proteins are genetic modifiers of neurodegeneration. PLoS Genet 2007 May 11; 3(5): e82

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Dr Samuel Frank has received consulting fees from Lundbeck and Allergan. Dr Joseph Jankovic is a consultant/advisory committee member for Allergan, Inc., Michael J. Fox Foundation for Parkinson Research, Merz Pharmaceuticals, Lundbeck Inc. and Teva. No sources of funding were used to assist in the preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Frank.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frank, S., Jankovic, J. Advances in the Pharmacological Management of Huntington’s Disease. Drugs 70, 561–571 (2010). https://doi.org/10.2165/11534430-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11534430-000000000-00000

Keywords

Navigation