Skip to main content
Log in

Cytokine Antagonists for the Treatment of Asthma

Progress to Date

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Asthma is a disease of the airways in which several cytokines such as interleukin (IL)-4, IL-5, IL-13 and tumor necrosis factor-α (TNFα) play a major role in the development and progression of inflammation, airway hyperresponsiveness, mucus production, and airway remodeling.

The conventional anti-inflammatory therapies, represented by inhaled corticosteroids and antileukotrienes, are not always able to provide optimal disease control and it is therefore hoped that cytokine antagonists could achieve this goal in such situations. Anticytokine therapies have been tested in preclinical studies and some have entered clinical trials. Anti-IL-4 therapies have been tested in animal models of allergy-related asthma, but because of unclear efficacy their development was discontinued. However, IL-4/IL-13 dual antagonists and IL-13-specific blocking agents are more promising, as they exhibit more sustained anti-inflammatory effects. IL-5 antagonists have been found to be of limited efficacy in clinical studies but might be useful in conditions characterized by severe hypereosinophilia, and in which asthma is one of the disease manifestations. Unlike other chronic inflammatory conditions, such as rheumatoid arthritis, the use of anti-TNFα therapies in asthma might be limited by the unfavorable risk/benefit ratio associated with long-term use. The identification of so-called asthma TNFα phenotypes and perhaps the use of a less aggressive treatment regimen might address this important aspect. Other cytokine antagonists (for example for IL-9 or IL-25) are currently being evaluated in the asthma setting, and could open new therapeutic perspectives based on their efficacy and safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I

Similar content being viewed by others

References

  1. Holgate ST, Polosa R. Treatment strategies for allergy and asthma. Nat Rev Immunol 2008; 8(3): 218–30

    Article  PubMed  CAS  Google Scholar 

  2. Fukuda T, Fukushima Y, Numao T, et al. Role of interleukin-4 and vascular cell adhesion molecule-1 in selective eosinophil migration into the airways in allergic asthma. Am J Respir Cell Mol Biol 1996; 14(1): 84–94

    PubMed  CAS  Google Scholar 

  3. Steinke JW, Borish L. Th2 cytokines and asthma: interleukin-4: its role in the pathogenesis of asthma, and targeting it for asthma treatment with interleukin-4 receptor antagonists. Respir Res 2001; 2(2): 66–70

    Article  PubMed  CAS  Google Scholar 

  4. Kasaian MT, Miller DK. IL-13 as a therapeutic target for respiratory disease. Biochem Pharmacol 2008; 76(2): 147–55

    Article  PubMed  CAS  Google Scholar 

  5. Wills-Karp M, Luyimbazi J, Xu X, et al. Interleukin-13: central mediator of allergic asthma. Science 1998; 282(5397): 2258–61

    Article  PubMed  CAS  Google Scholar 

  6. Wills-Karp M. The gene encoding interleukin-13: a susceptibility locus for asthma and related traits. Respir Res 2000; 1(1): 19–23

    Article  PubMed  CAS  Google Scholar 

  7. Brusselle G, Kips J, Joos G, et al. Allergen-induced airway inflammation and bronchial responsiveness in wild-type and interleukin-4-deficient mice. Am J Respir Cell Mol Biol 1995; 12(3): 254–9

    PubMed  CAS  Google Scholar 

  8. Brusselle GG, Kips JC, Tavernier JH, et al. Attenuation of allergic airway inflammation in IL-4 deficient mice. Clin Exp Allergy 1994; 24(1): 73–80

    Article  PubMed  CAS  Google Scholar 

  9. Pauwels RA, Brusselle GJ, Kips JC. Cytokine manipulation in animal models of asthma. Am J Respir Crit Care Med 1997; 156 (4 Pt 2): S78–81

    PubMed  CAS  Google Scholar 

  10. Leonard C, Tormey V, Burke C, et al. Allergen-induced cytokine production in atopic disease and its relationship to disease severity. Am J Respir Cell Mol Biol 1997; 17(3): 368–75

    PubMed  CAS  Google Scholar 

  11. Shi HZ, Deng JM, Xu H, et al. Effect of inhaled interleukin-4 on airway hyperreactivity in asthmatics. Am J Respir Crit Care Med 1998; 157 (6 Pt 1): 1818–21

    PubMed  CAS  Google Scholar 

  12. Wynn TA. IL-13 effector functions. Annu Rev Immunol 2003; 21: 425–56

    Article  PubMed  CAS  Google Scholar 

  13. Wills-Karp M. Interleukin-13 in asthma pathogenesis. Curr Allergy Asthma Rep 2004; 4(2): 123–31

    Article  PubMed  Google Scholar 

  14. Batra V, Musani AI, Hastie AT, et al. Bronchoalveolar lavage fluid concentrations of transforming growth factor (TGF)-beta1, TGF-beta2, interleukin (IL)-4 and IL-13 after segmental allergen challenge and their effects on alpha-smooth muscle actin and collagen III synthesis by primary human lung fibroblasts. Clin Exp Allergy 2004; 34(3): 437–44

    Article  PubMed  CAS  Google Scholar 

  15. Eum SY, Maghni K, Hamid Q, et al. Inhibition of allergic airways inflammation and airway hyperresponsiveness in mice by dexamethasone: role of eosinophils, IL-5, eotaxin, and IL-13. J Allergy Clin Immunol 2003; 111(5): 1049–61

    Article  PubMed  CAS  Google Scholar 

  16. Prieto J, Lensmar C, Roquet A, et al. Increased interleukin-13 mRNA expression in bronchoalveolar lavage cells of atopic patients with mild asthma after repeated low-dose allergen provocations. Respir Med 2000; 94(8): 806–14

    Article  PubMed  CAS  Google Scholar 

  17. Andrews AL, Nasir T, Bucchieri F, et al. IL-13 receptor alpha 2: a regulator of IL-13 and IL-4 signal transduction in primary human fibroblasts. J Allergy Clin Immunol 2006; 118(4): 858–65

    Article  PubMed  CAS  Google Scholar 

  18. Feng N, Lugli SM, Schnyder B, et al. The interleukin-4/interleukin-13 receptor of human synovial fibroblasts: overexpression of the nonsignaling interleukin-13 receptor alpha2. Lab Invest 1998; 78(5): 591–602

    PubMed  CAS  Google Scholar 

  19. Grunig G, Warnock M, Wakil AE, et al. Requirement for IL-13 independently of IL-4 in experimental asthma. Science 1998; 282(5397): 2261–3

    Article  PubMed  CAS  Google Scholar 

  20. Walter DM, McIntire JJ, Berry G, et al. Critical role for IL-13 in the development of allergen-induced airway hyperreactivity. J Immunol 2001; 167(8): 4668–75

    PubMed  CAS  Google Scholar 

  21. Webb DC, McKenzie AN, Koskinen AM, et al. Integrated signals between IL-13, IL-4, and IL-5 regulate airways hyperreactivity. J Immunol 2000; 165(1): 108–13

    PubMed  CAS  Google Scholar 

  22. Fish SC, Donaldson DD, Goldman SJ, et al. IgE generation and mast cell effector function in mice deficient in IL-4 and IL-13. J Immunol 2005; 174(12): 7716–24

    PubMed  CAS  Google Scholar 

  23. Ramalingam TR, Pesce JT, Sheikh F, et al. Unique functions of the type II interleukin 4 receptor identified in mice lacking the interleukin 13 receptor alpha1 chain. Nat Immunol 2008; 9(1): 25–33

    Article  PubMed  CAS  Google Scholar 

  24. Kolodsick JE, Toews GB, Jakubzick C, et al. Protection from fluorescein isothiocyanate-induced fibrosis in IL-13-deficient, but not IL-4-deficient, mice results from impaired collagen synthesis by fibroblasts. J Immunol 2004; 172(7): 4068–76

    PubMed  CAS  Google Scholar 

  25. Hart TK, Blackburn MN, Brigham-Burke M, et al. Preclinical efficacy and safety of pascolizumab (SB 240683): a humanized anti-interleukin-4 antibody with therapeutic potential in asthma. Clin Exp Immunol 2002; 130(1): 93–100

    Article  PubMed  CAS  Google Scholar 

  26. Ma Y, Hayglass KT, Becker AB, et al. Novel cytokine peptide-based vaccines: an interleukin-4 vaccine suppresses airway allergic responses in mice. Allergy 2007; 62(6): 675–82

    Article  PubMed  CAS  Google Scholar 

  27. Gavett SH, O'Hearn DJ, Karp CL, et al. Interleukin-4 receptor blockade prevents airway responses induced by antigen challenge in mice. Am J Physiol 1997;272(2Pt 1): L253–61

    PubMed  CAS  Google Scholar 

  28. Karras JG, Crosby JR, Guha M, et al. Anti-inflammatory activity of inhaled IL-4 receptor-alpha antisense oligonucleotide in mice. Am J Respir Cell Mol Biol 2007; 36(3): 276–85

    Article  PubMed  CAS  Google Scholar 

  29. Borish LC, Nelson HS, Lanz MJ, et al. Interleukin-4 receptor in moderate atopic asthma: a phase I/II randomized, placebo-controlled trial. Am J Respir Crit Care Med 1999; 160(6): 1816–23

    PubMed  CAS  Google Scholar 

  30. Wenzel S, Wilbraham D, Fuller R, et al. Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies. Lancet 2007; 370(9596): 1422–31

    Article  PubMed  CAS  Google Scholar 

  31. Knackmuss S, Krause S, Engel K, et al. Specific inhibition of interleukin-13 activity by a recombinant human single-chain immunoglobulin domain directed against the IL-13 receptor alpha1 chain. Biol Chem 2007; 388(3): 325–30

    Article  PubMed  CAS  Google Scholar 

  32. Economides AN, Carpenter LR, Rudge JS, et al. Cytokine traps: multi-component, high-affinity blockers of cytokine action. Nat Med 2003; 9(1): 47–52

    Article  PubMed  CAS  Google Scholar 

  33. Lively TN, Kossen K, Balhorn A, et al. Effect of chemically modified IL-13 short interfering RNA on development of airway hyperresponsiveness in mice. J Allergy Clin Immunol 2008; 121(1): 88–94

    Article  PubMed  CAS  Google Scholar 

  34. Ma Y, Hayglass KT, Becker AB, et al. Novel recombinant interleukin-13 peptide-based vaccine reduces airway allergic inflammatory responses in mice. Am J Respir Crit Care Med 2007; 176(5): 439–45

    Article  PubMed  CAS  Google Scholar 

  35. Morokata T, Ida K, Yamada T. Characterization of YM-90709 as a novel antagonist which inhibits the binding of interleukin-5 to interleukin-5 receptor. Int Immunopharmacol 2002; 2(12): 1693–702

    Article  PubMed  CAS  Google Scholar 

  36. Morokata T, Suzuki K, Ida K, et al. Effect of a novel interleukin-5 receptor antagonist, YM-90709, on antigen-induced eosinophil infiltration into the airway of BDF1 mice. Immunol Lett 2005; 98(1): 161–5

    Article  PubMed  CAS  Google Scholar 

  37. Karras JG, McGraw K, Mckay RA, et al. Inhibition of antigen-induced eosinophilia and late phase airway hyperresponsiveness by an IL-5 antisense oligonucleotide in mouse models of asthma. J Immunol 2000; 164(10): 5409–15

    PubMed  CAS  Google Scholar 

  38. Berry MA, Hargadon B, Shelley M, et al. Evidence of a role of tumor necrosis factor alpha in refractory asthma. N Engl J Med 2006; 354(7): 697–708

    Article  PubMed  CAS  Google Scholar 

  39. Antoniu SA, Mihaltan F, Ulmeanu R. Anti-TNF-alpha therapies in chronic obstructive pulmonary diseases. Expert Opin Investig Drugs 2008; 17(8): 1203–11

    Article  PubMed  CAS  Google Scholar 

  40. Morjaria JB, Chauhan AJ, Babu KS, et al. The role of a soluble TNF-a receptor fusion protein (etanercept) in corticosteroid-refractory asthma: a double blind, randomised placebo-controlled trial. Thorax 2008 Jul; 63(7): 584–91

    Article  PubMed  CAS  Google Scholar 

  41. Rouhani FN, Meitin CA, Kaler M, et al. Effect of tumor necrosis factor antagonism on allergen-mediated asthmatic airway inflammation. Respir Med 2005; 99(9): 1175–82

    Article  PubMed  Google Scholar 

  42. Erin EM, Leaker BR, Nicholson GC, et al. The effects of a monoclonal antibody directed against tumor necrosis factor-alpha in asthma. Am J Respir Crit Care Med 2006; 174(7): 753–62

    Article  PubMed  CAS  Google Scholar 

  43. Wenzel SE, Barnes PJ, Bleecker ER, et al. A randomized, double-blind, placebo-controlled study of tumor necrosis factor-alpha blockade in severe persistent asthma. Am J Respir Crit Care Med 2009; 179(7): 549–58

    Article  PubMed  CAS  Google Scholar 

  44. Corry DB, Folkesson HG, Warnock ML, et al. Interleukin 4, but not interleukin 5 or eosinophils, is required in a murine model of acute airway hyperreactivity. J Exp Med 1996; 183(1): 109–17

    Article  PubMed  CAS  Google Scholar 

  45. Benson M, Strannegard IL, Wennergren G, et al. Increase of the soluble IL-4 receptor (IL-4sR) and positive correlation between IL-4sR and IgE in nasal fluids from school children with allergic rhinitis. Allergy Asthma Proc 2000; 21(2): 89–95

    Article  PubMed  CAS  Google Scholar 

  46. Renz H, Enssle K, Lauffer L, et al. Inhibition of allergen-induced IgE and IgG1 production by soluble IL-4 receptor. Int Arch Allergy Immunol 1995; 106(1): 46–54

    Article  PubMed  CAS  Google Scholar 

  47. Borish LC, Nelson HS, Corren J, et al. Efficacy of soluble IL-4 receptor for the treatment of adults with asthma. J Allergy Clin Immunol 2001; 107(6): 963–70

    Article  PubMed  CAS  Google Scholar 

  48. Andrews AL, Holloway JW, Holgate ST, et al. IL-4 receptor alpha is an important modulator of IL-4 and IL-13 receptor binding: implications for the development of therapeutic targets. J Immunol 2006; 176(12): 7456–61

    PubMed  CAS  Google Scholar 

  49. Grunewald SM, Kunzmann S, Schnarr B, et al. A murine interleukin-4 antagonistic mutant protein completely inhibits interleukin-4-induced cell proliferation, differentiation, and signal transduction. J Biol Chem 1997; 272(3): 1480–3

    Article  PubMed  CAS  Google Scholar 

  50. Grunewald SM, Werthmann A, Schnarr B, et al. An antagonistic IL-4 mutant prevents type I allergy in the mouse: inhibition of the IL-4/IL-13 receptor system completely abrogates humoral immune response to allergen and development of allergic symptoms in vivo. J Immunol 1998; 160(8): 4004–9

    PubMed  CAS  Google Scholar 

  51. Nishikubo K, Murata Y, Tamaki S, et al. A single administration of interleukin-4 antagonistic mutant DNA inhibits allergic airway inflammation in a mouse model of asthma. Gene Ther 2003; 10(26): 2119–25

    Article  PubMed  CAS  Google Scholar 

  52. Tomkinson A, Duez C, Cieslewicz G, et al. A murine IL-4 receptor antagonist that inhibits IL-4- and IL-13-induced responses prevents antigen-induced airway eosinophilia and airway hyperresponsiveness. J Immunol 2001; 166(9): 5792–800

    PubMed  CAS  Google Scholar 

  53. Blanchard C, Mishra A, Saito-Akei H, et al. Inhibition of human interleukin-13-induced respiratory and oesophageal inflammation by anti-human-inter-leukin-13 antibody (CAT-354). Clin Exp Allergy 2005; 35(8): 1096–103

    Article  PubMed  CAS  Google Scholar 

  54. Kasaian MT, Donaldson DD, Tchistiakova L, et al. Efficacy of IL-13 neutralization in a sheep model of experimental asthma. Am J Respir Cell Mol Biol 2007; 36(3): 368–76

    Article  PubMed  CAS  Google Scholar 

  55. MedImmune, LLC. MedImmune advances asthma program with start of a phase 2 trial in Europe and Australia and first US-based clinical trial for antibody targeting IL-13 [media release]. 2008 Apr 14 [online]. Available from URL: http://www.medimmune.com/press/printstory.asp?reqid=1129725 [Accessed 2009 Jun 27]

  56. Bree A, Schlerman FJ, Wadanoli M, et al. IL-13 blockade reduces lung inflammation after Ascaris suum challenge in cynomolgus monkeys. J Allergy Clin Immunol 2007; 119(5): 1251–7

    Article  PubMed  CAS  Google Scholar 

  57. Takatsu K, Nakajima H. IL-5 and eosinophilia. Curr Opin Immunol 2008; 20(3): 288–94

    Article  PubMed  CAS  Google Scholar 

  58. Bousquet J, Chanez P, Lacoste JY, et al. Eosinophilic inflammation in asthma. N Engl J Med 1990; 323(15): 1033–9

    Article  PubMed  CAS  Google Scholar 

  59. Romagnoli M, Vachier I, Tarodo de laFuente P, et al. Eosinophilic inflammation in sputum of poorly controlled asthmatics. Eur Respir J 2002; 20(6): 1370–7

    Article  PubMed  CAS  Google Scholar 

  60. Shi HZ, Xiao CQ, Zhong D, et al. Effect of inhaled interleukin-5 on airway hyperreactivity and eosinophilia in asthmatics. Am J Respir Crit Care Med 1998; 157(1): 204–9

    PubMed  CAS  Google Scholar 

  61. Kips JC. Cytokines in asthma. Eur Respir J 2001; 18(34 Suppl.): 24–33S

    Article  Google Scholar 

  62. Egan RW, Athwahl D, Chou CC, et al. Inhibition of pulmonary eosinophilia and hyperreactivity by antibodies to interleukin-5. Int Arch Allergy Immunol 1995; 107(1-3): 321–2

    Article  PubMed  CAS  Google Scholar 

  63. Singh AD, Sanderson CJ. Anti-interleukin 5 strategies as a potential treatment for asthma. Thorax 1997; 52(5): 483–5

    Article  PubMed  CAS  Google Scholar 

  64. Mauser PJ, Pitman A, Witt A, et al. Inhibitory effect of the TRFK-5 anti-IL-5 antibody in a guinea pig model of asthma. Am Rev Respir Dis 1993; 148 (6 Pt 1): 1623–7

    Article  PubMed  CAS  Google Scholar 

  65. Mauser PJ, Pitman AM, Fernandez X, et al. Effects of an antibody to interleukin-5 in a monkey model of asthma. Am J Respir Crit Care Med 1995; 152(2): 467–72

    PubMed  CAS  Google Scholar 

  66. Kips JC, O'Connor BJ, Langley SJ, et al. Effect of SCH55700, a humanized anti-human interleukin-5 antibody, in severe persistent asthma: a pilot study. Am J Respir Crit Care Med 2003; 167(12): 1655–9

    Article  PubMed  Google Scholar 

  67. Hart TK, Cook RM, Zia-Amirhosseini P, et al. Preclinical efficacy and safety of mepolizumab (SB-240563), a humanized monoclonal antibody to IL-5, in cynomolgus monkeys. J Allergy Clin Immunol 2001; 108(2): 250–7

    Article  PubMed  CAS  Google Scholar 

  68. Leckie MJ. Anti-interleukin-5 monoclonal antibodies: preclinical and clinical evidence in asthma models. Am J Respir Med 2003; 2(3): 245–59

    Article  PubMed  CAS  Google Scholar 

  69. Flood-Page P, Menzies-Gow A, Phipps S, et al. Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J Clin Invest 2003; 112(7): 1029–36

    PubMed  CAS  Google Scholar 

  70. Flood-Page PT, Menzies-Gow AN, Kay AB, et al. Eosinophil's role remains uncertain as anti-interleukin-5 only partially depletes numbers in asthmatic airway. Am J Respir Crit Care Med 2003; 167(2): 199–204

    Article  PubMed  Google Scholar 

  71. Flood-Page P, Swenson C, Faiferman I, et al. A study to evaluate safety and efficacy of mepolizumab in patients with moderate persistent asthma. Am J Respir Crit Care Med 2007; 176(11): 1062–71

    Article  PubMed  CAS  Google Scholar 

  72. Buttner C, Lun A, Splettstoesser T, et al. Monoclonal anti-interleukin-5 treatment suppresses eosinophil but not T-cell functions. Eur Respir J 2003; 21(5): 799–803

    Article  PubMed  CAS  Google Scholar 

  73. Haldar P, Brightling CE, Hargadon B, et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med 2009; 360(10): 973–84

    Article  PubMed  CAS  Google Scholar 

  74. Nair P, Pizzichini MM, Kjarsgaard M, et al. Mepolizumab for prednisonedependent asthma with sputum eosinophilia. N Engl J Med 2009; 360(10): 985–93

    Article  PubMed  CAS  Google Scholar 

  75. Hertz M, Mahalingam S, Dalum I, et al. Active vaccination against IL-5 bypasses immunological tolerance and ameliorates experimental asthma. J Immunol 2001; 167(7): 3792–9

    PubMed  CAS  Google Scholar 

  76. Kim J, Remick DG. Tumor necrosis factor inhibitors for the treatment of asthma. Curr Allergy Asthma Rep 2007; 7(2): 151–6

    Article  PubMed  CAS  Google Scholar 

  77. Mukhopadhyay S, Hoidal JR, Mukherjee TK. Role of TNFalpha in pulmonary pathophysiology. Respir Res 2006; 7: 125

    Article  PubMed  Google Scholar 

  78. Toussirot E, Wendling D. The use of TNF-alpha blocking agents in rheumatoid arthritis: an update. Expert Opin Pharmacother 2007; 8(13): 2089–107

    Article  PubMed  CAS  Google Scholar 

  79. Sheehan KC, Pinckard JK, Arthur CD, et al. Monoclonal antibodies specific for murine p55 and p75 tumor necrosis factor receptors: identification of a novel in vivo role for p75. J Exp Med 1995; 181(2): 607–17

    Article  PubMed  CAS  Google Scholar 

  80. Nakae S, Lunderius C, Ho LH, et al. TNF can contribute to multiple features of ovalbumin-induced allergic inflammation of the airways in mice. J Allergy Clin Immunol 2007; 119(3): 680–6

    Article  PubMed  CAS  Google Scholar 

  81. Nakae S, Suto H, Berry GJ, et al. Mast cell-derived TNF can promote Th17 cell-dependent neutrophil recruitment in ovalbumin-challenged OTII mice. Blood 2007; 109(9): 3640–8

    Article  PubMed  CAS  Google Scholar 

  82. Kim J, Mckinley L, Natarajan S, et al. Anti-tumor necrosis factor-alpha antibody treatment reduces pulmonary inflammation and methacholine hyperresponsiveness in a murine asthma model induced by house dust. Clin Exp Allergy 2006; 36(1): 122–32

    Article  PubMed  CAS  Google Scholar 

  83. Thomas PS, Heywood G. Effects of inhaled tumour necrosis factor alpha in subjects with mild asthma. Thorax 2002; 57(9): 774–8

    Article  PubMed  CAS  Google Scholar 

  84. Howarth PH, Babu KS, Arshad HS et al. Tumour necrosis factor (TNFalpha) as a novel therapeutic target in symptomatic corticosteroid dependent asthma. Thorax 2005; 60(12): 1012–8

    Article  PubMed  CAS  Google Scholar 

  85. Silvestri M, Bontempelli M, Giacomelli M, et al. High serum levels of tumour necrosis factor-alpha and interleukin-8 in severe asthma: markers of systemic inflammation? Clin Exp Allergy 2006; 36(11): 1373–81

    Article  PubMed  CAS  Google Scholar 

  86. Toussirot E, Wendling D. The use of TNF-alpha blocking agents in rheumatoid arthritis: an overview. Expert Opin Pharmacother 2004; 5(3): 581–94

    Article  PubMed  CAS  Google Scholar 

  87. Mohler KM, Torrance DS, Smith CA, et al. Soluble tumor necrosis factor (TNF) receptors are effective therapeutic agents in lethal endotoxemia and function simultaneously as both TNF carriers and TNF antagonists. J Immunol 1993; 151(3): 1548–61

    PubMed  CAS  Google Scholar 

  88. Nanda S, Bathon JM. Etanercept: a clinical review of current and emerging indications. Expert Opin Pharmacother 2004; 5(5): 1175–86

    Article  PubMed  CAS  Google Scholar 

  89. Hutchison S, Choo-Kang BS, Bundick RV, et al. Tumour necrosis factor-alpha blockade suppresses murine allergic airways inflammation. Clin Exp Immunol 2008; 151(1): 114–22

    Article  PubMed  CAS  Google Scholar 

  90. Nie Z, Jacoby DB, Fryer AD. Etanercept prevents hyperresponsiveness by protecting neuronal M2 muscarinic receptors in antigen-challenged guinea pigs. Br J Pharmacol 2009; 156(1): 201–10

    Article  PubMed  CAS  Google Scholar 

  91. Diaz-Ley B, Guhl G, Fernandez-Herrera J. Off-label use of biologic agents in the treatment of dermatosis: part 1: infliximab and adalimumab [in Spanish]. Actas Dermosifiliogr 2007; 98(10): 657–78

    Article  PubMed  CAS  Google Scholar 

  92. Lin J, Ziring D, Desai S, et al. TNFalpha blockade in human diseases: an overview of efficacy and safety. Clin Immunol 2008; 126(1): 13–30

    Article  PubMed  CAS  Google Scholar 

  93. Deveci F, Muz MH, Ilhan N, et al. Evaluation of the anti-inflammatory effect of infliximab in a mouse model of acute asthma. Respirology 2008; 13(4): 488–97

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this review. The author has received lecture fees from Merck Sharpe and Dohme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabina Antonela Antoniu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antoniu, S.A. Cytokine Antagonists for the Treatment of Asthma. BioDrugs 23, 241–251 (2009). https://doi.org/10.2165/11317130-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11317130-000000000-00000

Keywords

Navigation