Skip to main content
Log in

Cystic Fibrosis Transmembrane Regulator Protein Mutations

‘Class’ Opportunity for Novel Drug Innovation

  • Leading Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Cystic fibrosis (CF) is the most common autosomal, recessive, life-span shortening disease in Caucasians. Since discovery of the gene for CF (cystic fibrosis transmembrane conductance regulator [CFTR]) in 1989, knowledge of the molecular function of this gene and its interactions has offered new therapeutic targets. New therapeutics aimed at improving mutant CFTR protein function, also known as ‘protein repair therapy,’ have been proposed but are yet to be successful in clinical trials. Some of the most exciting efforts involve a new field known as small molecule discovery, which entails the identification, evaluation, and optimization of small organic compounds that can alter the function of a selected gene target or cell phenotype. More than 1300 CFTR mutations have been identified. Many of the more common mutations have been organized into five broad classes based on the fate of the mutant CFTR protein. In each of these mutation classes, interventions have been able to restore some level of CFTR function in vitro. While these ‘repairs’ have yet to be demonstrated clinically, some early clinical trials are underway. Questions regarding the amount of CFTR correction needed, delivery methods, and optimal therapeutic combinations, however, remain outstanding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Table I

Similar content being viewed by others

References

  1. Cystic Fibrosis Foundation [online]. Available from URL: http://www.cff.org [Accessed 2006 Dec 19]

  2. Canadian Cystic Fibrosis Foundation [online]. Available from URL: http://www.cysticfibrosis.ca [Accessed 2006 Dec 19]

  3. Cystic Fibrosis Trust [online]. Available from URL: http://www.cftrust.org.uk[Accessed 2006 Dec 19]

  4. Cystic Fibrosis Association of New Zealand [online]. Available from URL: http://www.cfnz.org.nz [Accessed 2006 Dec 19]

  5. Cystic Fibrosis Australia national website [online]. Available from URL: http://www.cysticfibrosis.org.au [Accessed 2006 Dec 19]

  6. Centers for Disease Control and Prevention [online]. Available from URL: http://www.cdc.gov/genomics/gtesting/ACCE/FBR/CF/CFCliUti_36.htm [Accessed 2006 May 14]

  7. Littlewood J. The history of the development of cystic fibrosis care: 2002 [online]. Available from URL: http://www.cysticfibrosismedicine.com/htmldocs/CFText/historyof.htm [Accessed 2006 May 14]

  8. Riordan JR, Rommens JM, Kerem B, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989; 245(4922): 1066–73

    PubMed  CAS  Google Scholar 

  9. Kerem B, Rommens JM, Buchanan JA, et al. Identification of the cystic fibrosis gene: genetic analysis. Science 1989; 245(4922): 1073–80

    PubMed  CAS  Google Scholar 

  10. Tsui L-C. Cystic Fibrosis Mutation Database: 2006 [online]. Available from URL: http://www.genet.sickkids.on.ca [Accessed 2006 May 14]

  11. Drumm ML, Pope HA, Cliff WH, et al. Correction of the cystic fibrosis defect in vitro by retrovirus-mediated gene transfer. Cell 1990; 62(6): 1227–33

    PubMed  CAS  Google Scholar 

  12. Parsons DW. Airway gene therapy and cystic fibrosis. J Paediatr Child Health 2005; 41(3): 94–6

    PubMed  CAS  Google Scholar 

  13. Griesenbach U, Geddes DM, Alton EW. Gene therapy progress and prospects: cystic fibrosis. Gene Ther 2006; 13(14): 1061–7

    PubMed  CAS  Google Scholar 

  14. Rubenstein RC, Zeitlin PL. Use of protein repair therapy in the treatment of cystic fibrosis. Curr Opin Pediatr 1998; 10(3): 250–5

    PubMed  CAS  Google Scholar 

  15. Verkman AS. Drug discovery and epithelial physiology. Curr Opin Nephrol Hypertens 2004; 13(5): 563–8

    PubMed  CAS  Google Scholar 

  16. Berger AL, Ikuma M, Welsh MJ. Normal gating of CFTR requires ATP binding to both nucleotide-binding domains and hydrolysis at the second nucleotidebinding domain. Proc Natl Acad Sci U S A 2005; 102(2): 455–60

    PubMed  CAS  Google Scholar 

  17. Vergani P, Basso C, Mense M, et al. Control of the CFTR channel’s gates. Biochem Soc Trans 2005; 33 (Pt 5): 1003–7

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Choo-Kang LR, Zeitlin PL. Type I, II, III, IV, and V cystic fibrosis transmembrane conductance regulator defects and opportunities for therapy. Curr Opin Pulm Med 2000 Nov; 6(6): 521–9

    PubMed  CAS  Google Scholar 

  19. Mehta A. CFTR: more than just a chloride channel. Pediatr Pulmonol 2005; 39(4): 292–8

    PubMed  Google Scholar 

  20. Reddy MM, Quinton PM. Selective activation of cystic fibrosis transmembrane conductance regulator Cl− and HCO3− conductances. Jop 2001; 2 (4 Suppl.): 212–8

    PubMed  CAS  Google Scholar 

  21. Kunzelmann K, Schreiber R, Nitschke R, et al. Control of epithelial Na+ conductance by the cystic fibrosis transmembrane conductance regulator. Pflugers Arch 2000; 440(2): 193–201

    PubMed  CAS  Google Scholar 

  22. Huang P, Gilmore E, Kultgen P, et al. Local regulation of cystic fibrosis transmembrane regulator and epithelial sodium channel in airway epithelium. Proc Am Thorac Soc 2004; 1(1): 33–7

    PubMed  CAS  Google Scholar 

  23. Schroeder TH, Lee MM, Yacono PW, et al. CFTR is a pattern recognition molecule that extracts Pseudomonas aeruginosa LPS from the outer membrane into epithelial cells and activates NF-kappa B translocation. Proc Natl Acad Sci U S A 2002; 99(10): 6907–12

    PubMed  PubMed Central  CAS  Google Scholar 

  24. John Hopkins Cystic Fibrosis Center [online]. Available from URL: http://www.hopkinscg.org [Accessed 2006 Nov 30]

  25. Hamosh A, Rosenstein BJ, Cutting GR. CFTR nonsense mutations G542X and W1282X associated with severe reduction of CFTR mRNA in nasal epithelial cells. Hum Mol Genet 1992; 1(7): 542–4

    PubMed  CAS  Google Scholar 

  26. Cheng SH, Gregory RJ, Marshall J, et al. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 1990; 63(4): 827–34

    PubMed  CAS  Google Scholar 

  27. Becq F, Jensen TJ, Chang XB, et al. Phosphatase inhibitors activate normal and defective CFTR chloride channels. Proc Natl Acad Sci U S A 1994; 91(19): 9160–4

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Vankeerberghen A, Wei L, Teng H, et al. Characterization of mutations located in exon 18 of the CFTR gene. FEBS Lett 1998; 437(1–2): 1–4

    PubMed  CAS  Google Scholar 

  29. Augarten A, Kerem BS, Yahav Y, et al. Mild cystic fibrosis and normal or borderline sweat test in patients with the 3849 + 10 kb C→T mutation. Lancet 1993; 342(8862): 25–6

    PubMed  CAS  Google Scholar 

  30. Howard M, Frizzell RA, Bedwell DM. Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat Med 1996; 2(4): 467–9

    PubMed  CAS  Google Scholar 

  31. Bedwell DM, Kaenjak A, Benos DJ, et al. Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line. Nat Med 1997; 3: 1280–4

    PubMed  CAS  Google Scholar 

  32. Middleton PG, Geddes DM, Alton EW. Protocols for in vivo measurement of the ion transport defects in cystic fibrosis nasal epithelium. Eur Respir J 1994; 7(11): 2050–6

    PubMed  CAS  Google Scholar 

  33. Knowles M, Gatzy J, Boucher R. Increased bioelectric potential difference across respiratory epithelia in cystic fibrosis. N Engl J Med 1981; 305(25): 1489–95

    PubMed  CAS  Google Scholar 

  34. Wilschanski M, Yahav Y, Yaacov Y, et al. Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N Engl J Med 2003; 349(15): 1433–41

    PubMed  CAS  Google Scholar 

  35. Chih-Hung Lai HH, Chun SA, Nahas MM, et al. Correction of ATM gene function by aminoglycoside-induced read-through of premature termination codons. Proc Natl Acad Sci U S A 2004 Nov 2; 101(44): 15676–81

    Google Scholar 

  36. Bonifacino JS, Weissman AM. Ubiquitin and the control of protein fate in the secretory and endocytic pathways. Annu Rev Cell Dev Biol 1998; 14: 19–57

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Pasyk EA, Foskett JK. Mutant (delta F508) cystic fibrosis transmembrane conductance regulator Cl− channel is functional when retained in endoplasmic reticulum of mammalian cells. J Biol Chem 1995; 270(21): 12347–50

    PubMed  CAS  Google Scholar 

  38. Li C, Ramjeesingh M, Reyes E, et al. The cystic fibrosis mutation (delta F508) does not influence the chloride channel activity of CFTR. Nat Genet 1993; 3(4): 311–6

    PubMed  CAS  Google Scholar 

  39. Denning GM, Anderson MP, Amara JF, et al. Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature 1992; 358(6389): 761–4

    PubMed  CAS  Google Scholar 

  40. Cheng SH, Fang SL, Zabner J, et al. Functional activation of the cystic fibrosis trafficking mutant delta F508-CFTR by overexpression. Am J Physiol 1995; 268 (4 Pt 1): L615–24

    PubMed  CAS  Google Scholar 

  41. Rubenstein RC, Egan ME, Zeitlin PL. In eivitro pharmacologic restoration of CFTR-mediated chloride transport with sodium 4-phenylbutyrate in cystic fibrosis epithelial cells containing delta F508-CFTR. J Clin Invest 1997; 100(10): 2457–65

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Jiang C, Fang SL, Xiao YF, et al. Partial restoration of cAMP-stimulated CFTR chloride channel activity in deltaF508 cells by deoxyspergualin. Am J Physiol 1998; 275 (1 Pt 1): C171–8

    PubMed  CAS  Google Scholar 

  43. Choo-Kang LR, Zeitlin PL. Induction of HSP70 promotes deltaF508 CFTR trafficking. Am J Physiol Lung Cell Mol Physiol 2001; 281(1): L58–68

    PubMed  CAS  Google Scholar 

  44. Rubenstein RC, Zeitlin PL. A pilot clinical trial of oral sodium 4-phenylbutyrate (Buphenyl) in deltaF508-homozygous cystic fibrosis patients: partial restoration of nasal epithelial CFTR function. Am J Respir Crit Care Med 1998; 157(2): 484–90

    PubMed  CAS  Google Scholar 

  45. Illek B, Fischer H. Flavonoids stimulate Cl conductance of human airway epithelium in vitro and in vivo. Am J Physiol 1998; 275 (5 Pt 1): L902–10

    PubMed  CAS  Google Scholar 

  46. Curcuma longa (turmeric): monograph. Altern Med Rev 2001; 6 Suppl.: S62–6

  47. Egan ME, Pearson M, Weiner SA, et al. Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects. Science 2004; 304(5670): 600–2

    PubMed  CAS  Google Scholar 

  48. Dragomir A, Bjorstad J, Hjelte L, et al. Curcumin does not stimulate cAMP-mediated chloride transport in cystic fibrosis airway epithelial cells. Biochem Biophys Res Commun 2004; 322(2): 447–51

    PubMed  CAS  Google Scholar 

  49. Song Y, Sonawane ND, Salinas D, et al. Evidence against the rescue of defective deltaF508-CFTR cellular processing by curcumin in cell culture and mouse models. J Biol Chem 2004; 279(39): 40629–33

    PubMed  CAS  Google Scholar 

  50. Cystic Fibrosis Foundation: 2005 [online]. Available from URL: http://www.cf-f.org/research/clinical_trials/ongoing_trials/protein_rescue_ion_transport/index.cfm?.blnUseSession=True#Curcumin [Accessed 2006 May 14]

  51. Pedemonte N, Lukacs GL, Du K, et al. Small-molecule correctors of defective deltaF508-CFTR cellular processing identified by high-throughput screening. J Clin Invest 2005; 115(9): 2564–71

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Galietta LV, Jayaraman S, Verkman AS. Cell-based assay for high-throughput quantitative screening of CFTR chloride transport agonists. Am J Physiol Cell Physiol 2001; 281(5): C1734–42

    PubMed  CAS  Google Scholar 

  53. Vertex Pharmaceuticals Incorporated. Vertex pharmaceuticals and cystic fibrosis foundation therapeutics enter collaboration to develop oral drug candidate VX-770 for CF: 2006 [online]. Available from URL: http://www.vpharm.com/Pressreleases2006/pr032306.html [Accessed 2006 May 14]

  54. Howell LD, Borchardt R, Kole J, et al. Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain. Biochem J 2004; 378 (Pt 1): 151–9

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Howell LD, Borchardt R, Cohn JA. ATP hydrolysis by a CFTR domain: pharmacology and effects of G551D mutation. Biochem Biophys Res Commun 2000; 271(2): 518–25

    PubMed  CAS  Google Scholar 

  56. Li C, Ramjeesingh M, Wang W, et al. ATPase activity of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 1996; 271(45): 28463–8

    PubMed  CAS  Google Scholar 

  57. Andersson C, Roomans GM. Activation of deltaF508 CFTR in a cystic fibrosis respiratory epithelial cell line by 4-phenylbutyrate, genistein and CPX. Eur Respir J 2000; 15(5): 937–41

    PubMed  CAS  Google Scholar 

  58. Andersson C, Servetnyk Z, Roomans GM. Activation of CFTR by genistein in human airway epithelial cell lines. Biochem Biophys Res Commun 2003; 308(3): 518–22

    PubMed  CAS  Google Scholar 

  59. Gadsby DC, Nagel G, Hwang TC. The CFTR chloride channel of mammalian heart. Annu Rev Physiol 1995; 57: 387–416

    PubMed  CAS  Google Scholar 

  60. Randak C, Auerswald EA, Assfalg-Machleidt I, et al. Inhibition of ATPase, GTPase and adenylate kinase activities of the second nucleotide-binding fold of the cystic fibrosis transmembrane conductance regulator by genistein. Biochem J 1999; 340 (Pt 1): 227–35

    PubMed  PubMed Central  CAS  Google Scholar 

  61. Illek B, Zhang L, Lewis NC, et al. Defective function of the cystic fibrosis-causing missense mutation G551D is recovered by genistein. Am J Physiol 1999; 277 (4 Pt 1): C833–9

    PubMed  CAS  Google Scholar 

  62. Kelley TJ, al-Nakkash L, Drumm ML. CFTR-mediated chloride permeability is regulated by type III phosphodiesterases in airway epithelial cells. Am J Respir Cell Mol Biol 1995; 13(6): 657–64

    PubMed  CAS  Google Scholar 

  63. Koch C, Cuppens H, Rainisio M, et al. European epidemiologic registry of cystic fibrosis (ERCF): comparison of major disease manifestations between patients with different classes of mutations. Pediatr Pulmonol 2001; 31(1): 1–12

    PubMed  CAS  Google Scholar 

  64. Atlas AB, Orenstein SR, Orenstein DM. Pancreatitis in young children with cystic fibrosis. J Pediatr 1992; 120(5): 756–9

    PubMed  CAS  Google Scholar 

  65. Sheppard DN, Rich DP, Ostedgaard LS, et al. Mutations in CFTR associated with mild-disease-form Cl− channels with altered pore properties. Nature 1993; 362(6416): 160–4

    PubMed  CAS  Google Scholar 

  66. Drumm ML, Wilkinson DJ, Smit LS, et al. Chloride conductance expressed by AF508 and other mutant CFTRs in Xenopus oocytes. Proc Natl Acad Sci U S A 1991; 254: 1797–9

    CAS  Google Scholar 

  67. Grubb B, Lazarowski E, Knowles M, et al. Isobutylmethylxanthine fails to stimulate chloride secretion in cystic fibrosis airway epithelia. Am J Respir Cell Mol Biol 1993; 8(4): 454–60

    PubMed  CAS  Google Scholar 

  68. Zielenski J, Bozon D, Markiewicz D, et al. Analysis of CFTR transcripts in nasal epithelial cells and lymphoblasts of a cystic fibrosis patient with 621 + 1G→T and 711 + 1G→T mutations. Hum Mol Genet 1993; 2(6): 683–7

    PubMed  CAS  Google Scholar 

  69. Highsmith WE, Burch LH, Zhou Z, et al. A novel mutation in the cystic fibrosis gene in patients with pulmonary disease but normal sweat chloride concentrations. N Engl J Med 1994; 331(15): 974–80

    PubMed  CAS  Google Scholar 

  70. Chiba-Falek O, Kerem E, Shoshani T, et al. The molecular basis of disease variability among cystic fibrosis patients carrying the 3849+10 kb C→T mutation. Genomics 1998; 53(3): 276–83

    PubMed  CAS  Google Scholar 

  71. Nissim-Rafinia M, Aviram M, Randell SH, et al. Restoration of the cystic fibrosis transmembrane conductance regulator function by splicing modulation. EMBO Rep 2004; 5(11): 1071–7

    PubMed  PubMed Central  CAS  Google Scholar 

  72. Chang JG, Hsieh-Li HM, Jong YJ, et al. Treatment of spinal muscular atrophy by sodium butyrate. Proc Natl Acad Sci U S A 2001; 98(17): 9808–13

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Johnson LG, Olsen JC, Sarkadi B, et al. Efficiency of gene transfer for restoration of normal airway epithelial function in cystic fibrosis. Nat Genet 1992; 2(1): 21–5

    PubMed  CAS  Google Scholar 

  74. Ramalho AS, Beck S, Meyer M, et al. Five percent of normal cystic fibrosis transmembrane conductance regulator mRNA ameliorates the severity of pulmonary disease in cystic fibrosis. Am J Respir Cell Mol Biol 2002; 27(5): 619–27

    PubMed  CAS  Google Scholar 

  75. Kerem E. Pharmacologic therapy for stop mutations: how much CFTR activity is enough? Curr Opin Pulm Med 2004; 10(6): 547–52

    PubMed  CAS  Google Scholar 

  76. Sermet-Gaudelus I, Vallee B, Urbin I, et al. Normal function of the cystic fibrosis conductance regulator protein can be associated with homozygous deltaF508 mutation. Pediatr Res 2002; 52(5): 628–35

    PubMed  CAS  Google Scholar 

  77. ClinicalTrials.gov. A pilot trial of phenylbutyrate/genistein duotherapy (for cystic fibrosis) [online]. Available from URL: http://clinicaltrials.gov/ct/gui/show/NCT00016744;jsessionid=A0A59A3B05E173A486C319853B0EF6FA?order=32> [Accessed 2006 May 14]

  78. Lipecka J, Bali M, Thomas A, et al. Distribution of ClC-2 chloride channel in rat and human epithelial tissues. Am J Physiol Cell Physiol 2002; 282(4): C805–16

    PubMed  CAS  Google Scholar 

  79. MacDonald KD, Vij N, Zeitlin PL. Functional expression of human ClC2 in nasal epithelia of K18rtTA TET-On hClC2 mice [abstract]. Proc Am Thorac Soc 2006; 3: A410

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge grants from the National Institutes of Health (NHLBI) [Bethesda, MD, USA] and the Cystic Fibrosis Foundation (Bethesda, MD, USA). A licensing agreement exists between the Johns Hopkins University, Dr Zeitlin, and Ucyclyd Pharma Inc. The terms of this agreement are being managed by the Johns Hopkins University in accordance with its conflicts of interest policies.

Drs MacDonald and McKenzie have indicated they have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela L. Zeitlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacDonald, K.D., McKenzie, K.R. & Zeitlin, P.L. Cystic Fibrosis Transmembrane Regulator Protein Mutations. Pediatr-Drugs 9, 1–10 (2007). https://doi.org/10.2165/00148581-200709010-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00148581-200709010-00001

Keywords

Navigation