Skip to main content
Log in

Is Electric Arc Welding Linked to Manganism or Parkinson’s Disease?

  • Review Article
  • Published:
Toxicological Reviews

Abstract

Manganese and its inorganic compounds are widely used in many industries and have been accepted as occupational neurotoxins that have caused a distinct and disabling clinical entity, manganism, in several types of work, notably where exposure is by way of dust. There is inconclusive and inconsistent evidence that, in these occupations, subclinical neurological effects, detectable only by neurobehavioural studies, may be caused by low doses. This has prompted a re-evaluation of occupational exposure limits. Some countries, including the UK, already demand much higher levels of protection against exposure than 5 years ago.

Welding is the most common source of occupational exposure as manganese is an essential component of steel and so its compounds are inevitable components of fume emitted from steel welding processes. There it is found in respirable particles, often as complex oxides (spinels), sometimes within a core protected by a silicon oxide shell — as distinct from the much simpler form of particle formed by disintegration in processes such as mining and ore milling where manganism has been diagnosed convincingly. Millions of workers are at risk of exposure to manganese-containing compounds in fumes from electric arc welding of steel. In recent years it has been asserted that neurological and neurobehavioural disorders may develop consequent to exposure to steel welding fumes and that employment as a welder is associated with the unusually early onset of Parkinson’s disease. Causal relationships have been postulated. Welders have been recorded as having been exposed to high levels of manganese-containing fume, especially where they have worked in confined, unventilated spaces, although this appears from limited data to be the exception rather than the rule. Even then the dose received is generally less than in mining or ore crushing. When care is taken to exclude exposures from hardfacing and burning and cutting arc processes, where manganese may form a high percentage of the fume, manganese compounds usually form a relatively low percentage of the composition of welding fume particles, <2.0%, much outweighed by iron. Although these manganese-compound-containing welding fume particles are insoluble in water, the manganese compounds in particles that are retained in the alveoli may be absorbed, at least in part. Manganese concentrations in biological material samples in some exposed groups reflect this relative to unexposed workers. Some of the transfer systems for absorption and transport, including across the blood-brain barrier, are used in competition with iron which is present in abundance in welding fume. This may reduce absorption of manganese in welders and thus reduce the opportunity for sufficient doses to cause neurotoxicological consequences.

Scrutiny of the literature covering the last 40 years has revealed only five cases that meet sufficient criteria for manganism to just cross the diagnostic threshold, and even then they carry a degree of doubt with them. This low incidence alone gives notice that welders have not been and are not at high risk of clinically apparent damage from exposure to manganese. If this needs to be further emphasised, there is the fact that the literature contains no confirmed cases of manganism in welders. Assertions of abnormal results in neurobehavioural studies of welders have raised the possibility of there being a subclinical form of manganism with loss of fine motor control as one of its features. While observations of such changes in workers in other industries have caused regulators in some countries to apply more stringent controls of exposure, as yet the results lack convincing consistency and there is no indication of any dose-effect relationship. If welding fume can have these motor effects it would be a heavy and perhaps career-ending blow to those affected. It would not be prudent to dismiss the warnings sounded by the results of studies of welders, no matter how flawed these investigations are, but wiser and better to act with vigour to reduce exposure and monitor the effectiveness of this additional protection whilst conducting high quality research to allow sound conclusions to be drawn as to whether there actually is a subclinical disorder.

Idiopathic Parkinson’s disease is a common disorder affecting 1–2% of those in the general population aged >65 years. It has been suggested, on flawed and contested evidence, not that welding causes the disease but rather that employment as a welder carries with it the risk of developing this disease at a younger age than if that trade had not been followed. Manganese in welding fume has been nominated as the neurotoxin. This may be biologically feasible if manganese destroys insufficient receptor cells to produce clinical manganism but sufficient to enhance the effects of a reduced supply of dopamine to give the manifestations of already developing idiopathic Parkinson’s disease earlier in the course of destruction of the substantia nigra than if all receptors were intact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Table IV

Similar content being viewed by others

References

  1. Pettifor MJ. Technology driving steel forward. 49th Hatfield Memorial Lecture. Steel World 2002; 7: 11–9

    CAS  Google Scholar 

  2. Pekkari B. The future of welding and joining. Svetsarep 2004; 1: 53–9

    Google Scholar 

  3. Aggett PJ. Physiology and metabolism of essential trace elements: an outline. Clin Endocrinol Metab 1985; 14(3): 513–43

    Article  PubMed  CAS  Google Scholar 

  4. Dobson AW, Erikson KM, Aschner M. Manganese neurotoxicity. Ann N Y Acad Sci 2004 Mar; 1012: 115–28

    Article  PubMed  CAS  Google Scholar 

  5. Barceloux DG. Manganese. Clin Toxicol 1999; 37(2): 293–307

    Article  CAS  Google Scholar 

  6. National Acadamies Press. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium and zinc [online]. Available from URL: http://www.nap.edu/books/0309072794/html/ [Accessed 2004 Dec 16]

  7. Kilburn CJ. Manganese, malformations and motor disorders: findings in a manganese exposed population. Neurotoxicology 1987; 8: 421–9

    PubMed  CAS  Google Scholar 

  8. Kawamura R, Ikuta H, Fukuzumi S, et al. Intoxication by manganese in well water. Kitazato Arch 1940; 18: 145–71

    Google Scholar 

  9. Kondakis XG, Makris N, Leotsinidis M, et al. Possible health effects of high manganese concentration in drinking water. Arch Environ Health 1989 May; 44(3): 175–8

    Article  PubMed  CAS  Google Scholar 

  10. Vieregge P, Heinzow B, Korf G, et al. Long-term exposure to manganese in rural well water has no neurological effects. Can J Neurol Sci 1995; 22(4): 286–9

    PubMed  CAS  Google Scholar 

  11. Degner D, Bleich S, Riegel A, et al. Follow-up study after enterai manganese poisoning: clinical, laboratory and neuroradiological findings [in German]. Nervenarzt 2000 May; 71(5): 416–9

    Article  PubMed  CAS  Google Scholar 

  12. Holzgraefe M, Poser W, Kijewski H, et al. Chronic enterai poisoning caused by potassium permanganate: a case report. J Toxicol Clin Toxicol 1986; 24(3): 235–44

    Article  PubMed  CAS  Google Scholar 

  13. Ejima A, Imamura T, Nakamura S, et al. Manganese intoxication during total parenteral nutrition. Lancet 1992 Feb 15; 339(8790): 426

    Article  PubMed  CAS  Google Scholar 

  14. Fredstrom S, Rogosheske J, Gupta P, et al. Extrapyramidal symptoms in a BMT recipient with hyperintense basal ganglia and elevated manganese. Bone Marrow Transplant 1995; 15: 989–92

    Article  PubMed  CAS  Google Scholar 

  15. Hayashi Y, Shimpo T, Uesugi H, et al. A case of juvenile parkinsonism developed during total parenteral nutrition supplemented by manganese. Neurol Med (Tokyo) 1997; 46: 382–8

    Google Scholar 

  16. Nagatomo S, Umehara F, Hanada K, et al. Manganese intoxication during total parenteral nutrition: report of two cases and review of the literature. J Neurol Sci 1999 Jan 1; 162(1): 102–5

    Article  PubMed  CAS  Google Scholar 

  17. Mehta R, Reilly JJ. Manganese levels in a jaundiced long-term total parenteral nutrition patient: potentiation of haloperidol toxicity — case report and literature review. JPEN J Parenter Enterai Nutr 1990; 14(4): 428–30

    Article  CAS  Google Scholar 

  18. Fell JM, Renolds AP, Meadows N, et al. Manganese toxicity in children receiving long-term parenteral nutrition. Lancet 1996; 347(9010): 1218–21

    Article  PubMed  CAS  Google Scholar 

  19. Tjalve H, Henriksson J, Tallkvist J, et al. Uptake of manganese and cadmium from the nasal mucosa into the central nervous system via olfactory pathways in rats. Pharmacol Toxicol 1996; 79: 347–56

    Article  PubMed  CAS  Google Scholar 

  20. Tjalve H, Henriksson J. Uptake of metals in the brain via olfactory pathways. Nerotoxicology 1999 Apr-Jun; 20(2–3): 181–95

    CAS  Google Scholar 

  21. Tjalve H, Mejare C, Borg-Neczak K. Uptake and transport of manganese in primary and secondary olfactory neurones in pike. Pharmacol Toxicol 1995; 77(1): 3–31

    Article  Google Scholar 

  22. Drown DB, Oberg SG, Sharma RP. Pulmonary clearance of soluble and insoluble forms of manganese. J Toxicol Environ Health 1986; 17(2–3): 201–12

    Article  PubMed  CAS  Google Scholar 

  23. Hauser RA, Zesiewicz TA, Rosemurgy AS, et al. Manganese intoxication and chronic liver failure. Ann Neurol 1994; 36: 871–5

    Article  PubMed  CAS  Google Scholar 

  24. Versieck J, Barbier F, Speecke A, et al. Manganese, copper and zinc concentration in serum and packed blood cells during acute hepatitis, chronic hepatitis and posthepatic cirrhosis. Clin Chem 1974; 20: 1141–5

    PubMed  CAS  Google Scholar 

  25. Murphy VA, Wadhwani KC, Smith QR, et al. Saturable transport of manganese (II) across the rat blood brain barrier. J Neurochem 1991; 61: 948–54

    Article  Google Scholar 

  26. Rabin O, Hegedus L, Bourre JM, et al. Rapid brain uptake of manganese (II) across the blood brain barrier. J Neurochem 1993; 61: 509–17

    Article  PubMed  CAS  Google Scholar 

  27. Aschner M, Gannon M, Kimelberg HK. Manganese transport across the rat blood-brain barrier: saturable and transferrin-dependent mechanisms. Brain Res Bull 1994; 33: 345–9

    Article  PubMed  CAS  Google Scholar 

  28. Crossgrove JS, Allen DA, Bukaveckas BL, et al. Manganese distribution across the blood-brain barrier I: evidence for carrier-mediated influx of manganese citrate as well as manganese and manganese transferrin. Neurotoxicology 2003; 24: 3–13

    Article  PubMed  CAS  Google Scholar 

  29. Crossgrove JS, Yokel RA. Manganese distribution across the blood-brain barrier: the divalent metal transporter is not the major mechanism mediating brain manganese uptake. Neurotoxicology 2004; 25: 451–60

    Article  PubMed  CAS  Google Scholar 

  30. Takeda A, Ishiwateri S, Okada S. Manganese uptake into rat brain during development and aging. J Neurosci Res 1999; 56: 93–8

    Article  PubMed  CAS  Google Scholar 

  31. Aschner M, Gannon M, Kimelberg HK. Manganese uptake and efflux in cultured rat astrocytes. J Neurochem 1992; 58: 730–5

    Article  PubMed  CAS  Google Scholar 

  32. Aschner M. Manganese: brain transport and emerging research needs. Environ Health Perspect 2000 Jun; 108Suppl. 3: 429–32

    PubMed  CAS  Google Scholar 

  33. Aschner M, Aschner JL. Manganese transport across the blood-brain barrier: relationship to iron homeostasis. Brain Res Bull 1990; 24: 857–60

    Article  PubMed  CAS  Google Scholar 

  34. Yokel RA, Crossgrove JS, Bukaveckas BL. Manganese distribution across the blood-brain barrier II: manganese efflux from the brain does not appear to be carrier mediated. Neurotoxicology 2003; 24: 15–22

    Article  PubMed  CAS  Google Scholar 

  35. Nelson K, Golnick J, Korn T, et al. Manganese encephalopathy: utility of early magnetic resonance imaging. Br J Ind Med 1993; 50: 510–3

    PubMed  CAS  Google Scholar 

  36. Arjona A, Mata M, Bonet M. Diagnosis of chronic manganese intoxication by magnetic resonance imaging. N Engl J Med 1997; 336(13): 964–5

    Article  PubMed  CAS  Google Scholar 

  37. Kim Y, Kim KS, Yang JS, et al. Increase in signal intensities on T1-weighted magnetic resonance images in asymptomatic manganese-exposed workers. Neurotoxicology 1999; 20(6): 901–7

    PubMed  CAS  Google Scholar 

  38. Lucchini R, Albini E, Placidi D, et al. Brain magnetic resonance imaging and manganese exposure. Neurotoxicology 2000 Oct; 21(5): 769–75

    PubMed  CAS  Google Scholar 

  39. Dietz MC, Ihrig A, Wrazidlo W, et al. Results of magnetic resonance imaging in long-term manganese dioxide-exposed workers. Environ Res 2001; 85(1): 37–40

    Article  PubMed  CAS  Google Scholar 

  40. Kim Y. High signal intensities on Tl-weighted MRI as a biomarker of exposure to manganese. Ind Health 2004 Apr; 42(2): 111–5

    Article  PubMed  CAS  Google Scholar 

  41. Mirowitz SA, Westlich TJ. Basal ganglia signal intensity alterations: reversal after discontinuation of parenteral manganese administration. Radiology 1992 Nov; 185(2): 535–6

    PubMed  CAS  Google Scholar 

  42. Huang CC, Chu NS, Lu CS, et al. Long-term progression in chronic manganism: ten years of follow-up. Neurology 1998 Mar; 50(3): 698–700

    Article  PubMed  CAS  Google Scholar 

  43. Kim Y, Kim JW, Ito K, et al. Positron emission tomography (PET) in differentiating manganism from idiopathic parkinsonism. J Occup Health 1999; 41(2): 91–4

    Article  Google Scholar 

  44. Abe Y, Kachi T, Kato T, et al. Diagnostic utility of positron emission tomography for parkinsonism after chronic manganese exposure [in Japanese]. Rinsho Shinkeigaku 1999 Jul; 39(7): 693–9

    PubMed  CAS  Google Scholar 

  45. Eriksson H, Tedroff J, Thuomas K-A, et al. Manganese induced brain lesions in Macaca fascicularis as revealed by positron emission tomography and magnetic resonance imaging. Arch Toxicol 1992; 66(6): 403–7

    Article  PubMed  CAS  Google Scholar 

  46. Shinotoh H, Snow BJ, Huang CC, et al. Presynaptic and postsynaptic striatal dopaminergic function in manganese intoxication studied by positron emission tomography [abstract]. Can J Neurol Sci 1993; 20Suppl. 4: S236

    Google Scholar 

  47. Calne DB, Snow BJ. PET imaging in Parkinsonism. Adv Neurol 1993; 60: 484–7

    PubMed  CAS  Google Scholar 

  48. Kim Y, Kim JW, Ito K, et al. Idiopathic parkinsonism with superimposed manganese exposure: utility of positron emission tomography. Neurotoxicology 1999 Apr; 20(2–3): 249–52

    PubMed  CAS  Google Scholar 

  49. Shinotoh H, Snow BJ, Hewitt KA, et al. MRI and PET studies of manganese-intoxicated monkeys. Neurology 1995; 45(6): 1199–204

    Article  PubMed  CAS  Google Scholar 

  50. Gwiazda RH, Lee D, Sheridan J, et al. Low cumulative manganese exposure affects striatal GABA but not dopamine. Neurotoxicology 2002; 23(1): 69–76

    Article  PubMed  CAS  Google Scholar 

  51. Couper J. On the effects of black oxide of manganese when inhaled into the lungs. Br Ann Med Pharmacol 1837; 1: 41: 41–2

    Google Scholar 

  52. Rodier J. Manganese poisoning in Moroccan miners. Br J Ind Med 1955 Jan; 12(1): 21–35

    PubMed  CAS  Google Scholar 

  53. Schuler P, Oyanguren H, Maturana V, et al. Manganese poisoning; environmental and medical study at a Chilean mine. Ind Med Surg 1957 Apr; 26(4): 167–73

    PubMed  CAS  Google Scholar 

  54. Penalver R. Diagnosis and treatment of manganese intoxication: report of a case. AMA Arch Ind Health 1957 Jul; 16(1): 64–6

    PubMed  CAS  Google Scholar 

  55. Abd El Naby S, Hassanein M. Neuropsychiatric manifestations of chronic manganese poisoning. J Neurol Neurosurg Psychiatry 1965; 28: 282–8

    Article  CAS  Google Scholar 

  56. Mena I, Marin O, Fuenzalida S, et al. Chronic manganese poisoning: clinical picture and manganese turnover. Neurology 1967 Feb; 17(2): 128–36

    Article  PubMed  CAS  Google Scholar 

  57. Balani SG, Umarji GM, Bellare RA, et al. Chronic manganese poisoning: a case report. J Postgrad Med 1967 Jul; 13(3): 116–21

    PubMed  CAS  Google Scholar 

  58. Chandra SV, Seth PK, Mankeshwar JK. Manganese poisoning: clinical and biochemical observation. Environ Res 1974; 7: 374–80

    Article  Google Scholar 

  59. Hochberg F, Miller G, Valenzuela R, et al. Late motor deficits of Chilean manganese miners: a blinded control study. Neurology 1996; 47(3): 788–95

    Article  PubMed  CAS  Google Scholar 

  60. Canavan MM, Cobb S, Drinker CK. Chronic manganese poisoning: report of a case with autopsy. Arch Neurol Psychiatry 1934; 32: 501–12

    Article  Google Scholar 

  61. Flinn RH, Neal PA, Reinhart WH, et al. Chronic manganese poisoning in an ore-crushing mill [public health bulletin no. 247]. Washington, DC: US Government Printing Office, 1940: 1–77

    Google Scholar 

  62. Flinn RH, Neal PA, Fulton WB. Industrial manganese poisoning. J Ind Hyg Toxicol 1941; 23: 374–87

    CAS  Google Scholar 

  63. Tanaka S, Lieben J. Manganese poisoning and exposure in Pennsylvania. Arch Environ Health 1969 Nov; 19(5): 674–84

    PubMed  CAS  Google Scholar 

  64. Greenhouse AH. Manganese intoxication in the United States. Trans Am Neurol Assoc 1971; 96: 248–9

    PubMed  CAS  Google Scholar 

  65. Cook DG, Fahn S, Brait KA. Chronic manganese intoxication. Arch Neurol 1974 Jan; 30(1): 59–64

    Article  PubMed  CAS  Google Scholar 

  66. Chia SE, Gan SL, Chua LH, et al. Postural stability among manganese exposed workers. Neurotoxicology 1995; 16(3): 519–26

    PubMed  CAS  Google Scholar 

  67. Emara AM, El-Shawabi SH, Madkour OI, et al. Chronic manganese poisoning in the dry battery industry. Br J Ind Med 1971; 28: 78–82

    PubMed  CAS  Google Scholar 

  68. Hine CH, Pasi A. Manganese intoxication. West J Med 1975 Aug; 123(2): 101–7

    PubMed  CAS  Google Scholar 

  69. Blodgett E. Potters Manganese toxicity 2000 [online]. Available from URL: http://www.ceramic-materials.com/cermat/education/139.html [Accessed 2002 Nov 25]

  70. Smyth LT, Ruhf RC, Whitman NE, et al. Clinical manganism and exposure to manganese in the production and processing of ferromanganese alloy. J Occup Med 1973 Feb; 15(2): 101–9

    PubMed  CAS  Google Scholar 

  71. Saric M, Markicevic A, Hrustic O. Occupational exposure to manganese. Br J Ind Med 1977; 34: 114–8

    PubMed  CAS  Google Scholar 

  72. Jonderko G, Kujawska A, Langauer-Lewowicka H. Problems of chronic manganese poisoning on the basis of investigations of workers at a manganese alloy foundry. Int Arch Arbeitsmed 1971; 28(3): 250–64

    Article  PubMed  CAS  Google Scholar 

  73. Huang CC, Chu NS, Lu CS, et al. Chronic manganese intoxication. Arch Neurol 1989 Oct; 46(10): 1104–6

    Article  PubMed  CAS  Google Scholar 

  74. Wang J-D, Huang C-C, Hwang Y-H, et al. Manganese induced parkinsonism: an outbreak due to an unrepaired ventilation control system in a ferromanganese smelter. Br J Ind Med 1989 Dec; 46(12): 856–9

    PubMed  CAS  Google Scholar 

  75. Hua MS, Huang CC. Chronic occupational exposure to manganese and neurobehavioral function. J Clin Exp Neuropsychol 1991 Jul; 13(4): 495–507

    Article  PubMed  CAS  Google Scholar 

  76. Huang CC, Lu CS, Chu NS, et al. Progression after chronic manganese exposure. Neurology 1993; 43: 1479–83

    Article  PubMed  CAS  Google Scholar 

  77. Huang C-C, Chu N-S, Lu C-S, et al. Cock gait in manganese intoxication. Mov Disord 1997 Sep; 12(5): 807–8

    Article  PubMed  CAS  Google Scholar 

  78. Lander F, Kristiansen J, Lauritsen JM. Manganese exposure in foundry furnacemen and scrap recycling workers. Int Arch Occup Environ Health 1999; 72(8): 546–50

    Article  PubMed  CAS  Google Scholar 

  79. Lim Y, Yim HW, Kim KA, et al. Review on manganese poisoning. Korean J Occup Health 1991; 30(1): 13–8

    Google Scholar 

  80. Beintker E. The effect of manganese during arc welding. Zentralblatt Gewerbehygiene 1932; 9 (Oct–Nov): 207–11

    Google Scholar 

  81. Hoschek R. The causes of symptoms in electric welders [in German]. Arch Gewerbepathol Gewerbehygiene 1955; 14: 58–76

    CAS  Google Scholar 

  82. Oltramare M, Tchicaloff M, Desbaumes P, et al. Chronic manganese poisoning in two arc welders. Int Arch Gewerbepathol Gewerbehyg 1965 Mar 29; 21: 124–40

    Article  PubMed  CAS  Google Scholar 

  83. Whitlock Jr CM, Amuso SJ, Bittenbender JB. Chronic neurological disease in two manganese steel workers. Am Ind Hyg Assoc J 1966 Sep; 27(5): 454–9

    Article  PubMed  Google Scholar 

  84. Whitman NE, Brandt AD. Comments on paper by Dr Whitlock [letter]. Am Ind Hyg Assoc J 1966; (Sep/Oct): 459

    Google Scholar 

  85. Chandra SV, Shukla GS, Srivastava RS, et al. An exploratory study of manganese exposure to welders. Clin Toxicol 1981; 18: 407–16

    Article  PubMed  CAS  Google Scholar 

  86. Rasmussen KH, Jepsen JR. The organic psychosyndrome in electric arc welders: a possible sequela of manganese toxicity [in German]. Ugeskr Laeger 1987 Dec 14; 149(51): 3497–8

    PubMed  CAS  Google Scholar 

  87. Sjögren B, Gustavsson P, Hogstedt C. Neuropsychiatric symptoms among welders exposed to neurotoxic metals. Br J Ind Med 1990; 47(10): 704–7

    PubMed  Google Scholar 

  88. Angle CR. Dimercaptosuccinic acid (DMSA): negligible effect on manganese in urine and blood. Occup Environ Med 1995; 52(12): 846

    Article  PubMed  CAS  Google Scholar 

  89. Sjögren B, Iregren A, Frech W, et al. Effects on the nervous system among welders exposed to aluminium and manganese. Occup Environ Med 1996; 53(1): 32–40

    Article  PubMed  Google Scholar 

  90. Kim J-W, Kim Y-H, Cheong H-K, et al. Three cases of manganese induced parkinsonism: differences from idiopathic Parkinsonism. J Kor Neurol Ass 1998; 16(3): 336–40

    Google Scholar 

  91. Barrington WW, Angle CR, Willcockson NK, et al. Autonomic function in manganese alloy workers. Environ Res 1998; 78(1): 50–8

    Article  PubMed  CAS  Google Scholar 

  92. Discalzi G, Pira E, Hernandez EH, et al. Occupational Mn parkinsonism: magnetic resonance imaging and clinical patterns following CaNa2 -EDTA chelation. Neurotoxicology 2000; 21(5): 863–6

    PubMed  CAS  Google Scholar 

  93. Sato K, Ueyama H, Arakawa R, et al. The case of a welder with parkinsonism after chronic manganese exposure [in Japanese]. Rinsho Shinkeigaku 2000; 40(11): 1110–5

    PubMed  CAS  Google Scholar 

  94. Sinczuk-Walczak H, Jakubowski M, Matczak W. Neurological and neurophysiological examinations of workers occupationally exposed to manganese. Int Arch Occup Environ Health 2001; 14: 329–37

    CAS  Google Scholar 

  95. Ono K, Komai K, Yamada M. Myoclonic involuntary movement associated with chronic manganese poisoning. J Neurol Sci 2002; 199: 93–6

    Article  PubMed  Google Scholar 

  96. Sadek AH, Rauch R, Schulz PE. Parkinsonism due to manganism in a welder. Int J Toxicol 2003 Sep; 22(5): 393–401

    PubMed  Google Scholar 

  97. Josephs KA, Ahlskog JE, Klos KJ, et al. Neurologic manifestations in welders with pallidal MRI T1 hyperintensity. Neurology 2005; 64: 1–7

    Article  Google Scholar 

  98. Calne DB, Chu N-S, Hung C-C, et al. Manganism and idiopathic parkinsonism: similarities and differences. Neurology 1994 Sep; 44(9): 1583–6

    Article  PubMed  CAS  Google Scholar 

  99. Olanow CW. Manganese-induced parkinsonism and Parkinson’s disease. Ann N Y Acad Sci 2004 Mar; 1012: 209–23

    Article  PubMed  CAS  Google Scholar 

  100. Davis JM, Elias RW. Risk assessment of metals. In: Chang LW, editor. Toxicology of metals. Boca Raton (FL): CRC Lewis, 1996

    Google Scholar 

  101. Zatta P, Lucchini R, van Rensburg SJ, et al. The role of metals in neurodegenerative processes: aluminum, manganese, and zinc. Brain Res Bull 2003 Nov 15; 62(1): 15–28

    Article  PubMed  CAS  Google Scholar 

  102. Sassine MP, Mergler D, Bowler R, et al. Manganese accentuates adverse mental health effects associated with alcohol use disorders. Biological Psychiatry 2002; 51(11): 909–21

    Article  PubMed  CAS  Google Scholar 

  103. Yoshikawa K, Matsumoto M, Hamanaka M, et al. A case of manganese induced parkinsonism in hereditary haemorrhagic telangiectasia. J Neurol Neurosurg Psychiatry 2003 Sep; 74(9): 1312–4

    Article  PubMed  CAS  Google Scholar 

  104. de la Fuente-Fernandez R. Portal systemic shunts, manganese, and parkinsonism. J Neurol Neurosurg Psychiatry 2004; 75: 1081

    PubMed  Google Scholar 

  105. Zheng YX, Chan P, Pan ZF, et al. Polymorphism of metabolic genes and susceptibility to occupational chronic manganism. Biomarkers 2002 Jul; 7(4): 337–46

    Article  PubMed  CAS  Google Scholar 

  106. Mena I, Court J, Fuenzalida S, et al. Modification of chronic manganese poisoning: treatment with L-dopa and 5-OH tryptophane. N Engl J Med 1970; 282: 5–10

    Article  PubMed  CAS  Google Scholar 

  107. Rosenstock HA, Simons DG, Meyer JS. Chronic manganism: neurologic and laboratory studies during treatment with levodopa. JAMA 1971 Sep 6; 217(10): 1354–8

    Article  PubMed  CAS  Google Scholar 

  108. Lu CS, Huang CC, Chu NS, et al. Levodopa failure in chronic manganism. Neurology 1994; 44(9): 1600–2

    Article  PubMed  CAS  Google Scholar 

  109. Koller WC, Lyons KE, Truly W. Effect of levodopa treatment for parkinsonism in welders: a double blind study. Neurology 2004; 62(5): 730–3

    Article  PubMed  CAS  Google Scholar 

  110. Iregren A. Manganese neurotoxicity in industrial exposures: proof of effects, critical exposure level, and sensitive tests. Neurotoxicology 1999 Apr; 20(2–3): 315–23

    PubMed  CAS  Google Scholar 

  111. Anger WK. Neurobehavioural tests and systems to assess neurotoxic exposures in the workplace and community. Occup Environ Med 2003; 60(7): 531–48

    Article  PubMed  Google Scholar 

  112. Lees-Haley PR, Greiffenstein MF, Larrabee GJ, et al. Methodological problems in the neuropsychological assessment of effects of exposure to welding fumes and manganese. Clin Neuropsychol 2004; 18: 449–464

    Article  PubMed  Google Scholar 

  113. Siegl P, Bergert KD. A method of early diagnostic monitoring for manganese exposure [in German]. Z Gesamte Hyg 1982 Aug; 28(8): 524–6

    PubMed  CAS  Google Scholar 

  114. Roels H, Lauwerys R, Buchet JP, et al. Epidemiological survey among workers exposed to manganese: effects on lung, central nervous system, and some biological indices. Am J Ind Med 1987; 11: 307–27

    Article  PubMed  CAS  Google Scholar 

  115. Iregren A. Psychological test performance in foundry workers exposed to low levels of manganese. Neurotoxicol Teratol 1990 Nov; 12(6): 673–5

    Article  PubMed  CAS  Google Scholar 

  116. Cizinsky G, Hagman M, Iregren A, et al. Manganese exposure in Swedish steel smelter plants: a health hazard to the nervous system. Scand J Work Environ Health 1991; 17(4): 275–81

    Google Scholar 

  117. Wennberg A, Iregren A, Struwe G, et al. Manganese exposure in steel smelters a health hazard to the nervous system. Scand J Work Environ Health 1991 Aug; 17(4): 255–62

    Article  PubMed  CAS  Google Scholar 

  118. Roels HA, Ghyselen P, Buchet JP, et al. Assessment of the permissible exposure level to manganese in workers exposed to manganese dioxide dust. Br J Ind Med 1992; 49: 25–34

    PubMed  CAS  Google Scholar 

  119. Wennberg A, Hagman M, Johansson L. Preclinical neurophysiological signs of parkinsonism in occupational manganese exposure. Neurotoxicology 1992; 13(1): 271–4

    PubMed  CAS  Google Scholar 

  120. Mergler D, Huel G, Bowler R, et al. Nervous system dysfunction among workers with long-term exposure to manganese. Environ Res 1994; 64(2): 151–80

    Article  PubMed  CAS  Google Scholar 

  121. Lucchini R, Selis L, Folli D, et al. Neurobehavioural effects of manganese in workers from a ferroalloy plant after temporary cessation of exposure. Scand J Work Environ Health 1995; 21(2): 143–9

    Article  PubMed  CAS  Google Scholar 

  122. Lucchini R, Bergamaschi E, Smargiassi A, et al. Motor function, olfactory threshold, and hematological indices in manganese-exposed ferroalloy workers. Environ Res 1997; 73(1–2): 175–80

    Article  PubMed  CAS  Google Scholar 

  123. Bast-Pettersen R, Ellingsen DG, Hetland SM, et al. Neuropsychological function in manganese alloy plant workers. Int Arch Occup Environ Health 2004; 77(4): 277–87

    Article  PubMed  CAS  Google Scholar 

  124. Kristiansen J, Frost P, Lund SP, et al. Occupational manganese exposure in Denmark: a systematic literature review with focus on nervous system impairment and exposure. In: Proceedings of the FORCE Technology International Conference on Health and Safety in Welding and Allied Processes; 2005 May 9–11; Copenhagen

  125. Health and Safety Executive. Chemical Hazard Alert Notice: manganese and its inorganic compounds. CHAN 18 — June 2000 [online]. Available from URL: http://www.hse.gov.uk/pubns/chanl9.htm [accessed 2000 Oct 11]

  126. Health and Safety Executive. Workplace Exposure Limits: containing the list of workplace exposure limits for use with the Control of Substances Hazardous to Health Regulations 2002 (as amended). London: HSE Books; 2005. EH40/2005

    Google Scholar 

  127. Brown KL. Environmental aspects of fume in air and water. Villepinte: International Institute of Welding Document; 1997. Doc. CV111 1804-97

    Google Scholar 

  128. Evans MJ, Ingle J, Molyneux MK, et al. An occupational hygiene study of a controlled welding task using a general purpose rutile electrode. Ann Occup Hyg 1979; 22(1): 1–17

    Article  PubMed  CAS  Google Scholar 

  129. Järvisalo J, Olkinuora M, Kiilunen M, et al. Urinary and blood manganese in occupationally nonexposed populations and in manual metal arc welders of mild steel. Int Arch Occup Environ Health 1992; 63: 495–501

    Article  PubMed  Google Scholar 

  130. Fairfax RE. Manganese exposure during welding operations. Appl Occup Environ Hyg 1994; 9(8): 537–8

    Article  Google Scholar 

  131. Vasconcelos MTSD, Machado AASC, Silva-Laquipai PAP. Metals and fluoride from electric arc welding fume in real tasks. Part 11: influence of the welding parameters on the pollutant levels. Occup Hyg 1996; 3(5): 331–40

    CAS  Google Scholar 

  132. Ulfvarson U. Survey of air contaminants from welding. Scand J Work Environ Health 1981; 7Suppl. 2: 1–28

    PubMed  Google Scholar 

  133. Willingham DC, Hilton DE. Some aspects of fume emissions from MIG welding stainless steel. Welding Metal Fabrication 1986; 54(5): 226–9

    Google Scholar 

  134. Castner HR, Null CL. Chromium, nickel and manganese in shipyard welding fumes. Welding J 1998; 77(6): 223s–31s

    Google Scholar 

  135. Kobayashi M, Maki S, Hashimoto Y, et al. Investigations on chemical composition of welding fumes. Welding J 1983; 62(7): 1902s–196s

    Google Scholar 

  136. Tandon RK, Ellis J, Crisp PT, et al. Chemical investigation of welding fumes from hard-facing and HSLA steel electrodes. Welding J 1986; 65(9): 231s–6s

    Google Scholar 

  137. Jenkins NT, Eagar TW. Chemical analysis of welding fume particles. Welding J 2005 (Jun); 87s–93s

    Google Scholar 

  138. Ingle J. Device for automatic recording of arcing periods during electric welding. Ann Occup Hyg 1986; 30(1): 123–4

    Article  Google Scholar 

  139. Karlsen JT, Farrants G, Torgrimsen T, et al. Chemical composition and morphology of welding fume particles and grinding dusts. Am Ind Hyg Assoc J 1992; 53(5): 290–7

    Article  PubMed  CAS  Google Scholar 

  140. Fogh A, Frost J, Georg J. Report on a Danish investigation into the health and working environment of arc welders. Villepinte: International Institute of Welding; 1971. Doc. 8-440-71

    Google Scholar 

  141. Bellido-Milla D, Hernandez-Artiga MP, Hidalgo-Hidalgo de Cisneros JL, et al. Analytical study of hygiene hazards involved in naval industry welding processes. Appl Occup Environ Hyg 1995; 10(11): 921–6

    Article  CAS  Google Scholar 

  142. Korczynski RE. Occupational health concerns in the welding industry. Appl Occup Environ Hyg 2000 Dec; 15(12): 936–45

    Article  PubMed  CAS  Google Scholar 

  143. Smargiassi A, Baldwin M, Savard S, et al. Assessment of exposure to manganese in welding operations during the assembly of heavy excavation machinery accessories. Appl Occup Environ Hyg 2000 Oct; 15(10): 746–50

    Article  PubMed  CAS  Google Scholar 

  144. Susi P, Goldberg M, Barnes P, et al. The use of a task-based exposure assessment model (T-BEAM) for assessment of metal fume exposures during welding and thermal cutting. Appl Occup Environ Hyg 2000 Jan; 15(1): 26–38

    Article  PubMed  CAS  Google Scholar 

  145. Ojima J, Shibata N, Iwasaki T. Laboratory evaluation of welder’s exposure and efficiency of air duct ventilation for welding work in a confined space. Ind Health 2000 Jan; 38(1): 24–9

    Article  PubMed  CAS  Google Scholar 

  146. Mattorano D, Harney J, Cook C, et al. Metal exposure during ship repair and shipbreaking procedures. Appl Occup Environ Hyg 2001 Mar; 16(3): 339–49

    PubMed  CAS  Google Scholar 

  147. Spiegel-Ciobanu VE. Hazardous substances in welding and allied processes. Villepinte: International Institute of Welding Document; 1997. Doc. CVIII-1812-97

    Google Scholar 

  148. Lippold JG, Dickinson DW. Characterisation of arc welding fume. Presentation given to Commission VIII (Health and Safety) of the International Institute of Welding, 2005 Jul 13, Prague, Czech Republic

    Google Scholar 

  149. Farrants G, Schuler B, Karlsen J, et al. Characterisation of the morphological properties of welding particles by transmission electron microscopy and digital image analysis. Am Ind Hyg Assoc J 1989; 50(9): 473–9

    Article  PubMed  CAS  Google Scholar 

  150. Fasiska EJ, Wagenblast HW, Nasta M. Characterization of arc welding fume. Miami (FL): American Welding Society, 1983

    Google Scholar 

  151. Spiegel-Ciobanu VE. Some remarks on the question of ultrafine particles (UFP) in welding. Villepinte: International Institute of Welding; 2000. Doc. CVIII 1904-00

    Google Scholar 

  152. Chen BT. Effect of particle size on welding fume deposition based on a lung model. In: Handbook of presentations at Conference on Health Effects of Welding; 2005 Jul 23–24; Morgantown (WV)

    Google Scholar 

  153. Spiegel-Ciobanu VE. The formation of ultrafine particles during welding and allied processes. Annual Assembly of the International Institute of Welding; 2003 Jul 6–11; Bucharest

    Google Scholar 

  154. Donaldson K, Stone V, Clouter A, et al. Ultrafine particles. Occup Environ Med 2001; 58(3): 211–6

    Article  PubMed  CAS  Google Scholar 

  155. Health and Safety Executive. Nanoparticles: an occupational hygiene review [research report 274]. London: Health and Safety Executive, 2004: 59

    Google Scholar 

  156. Voitkevich VG. Investigation of heterogenicity of welding fume particle composition by the method of x-ray photoelectron spectroscopy. Welding World 1988; 26: 108–11

    CAS  Google Scholar 

  157. Minni E, Hofmann S, Sivonen SJ. An AES study of particles in the welding fumes of mild and stainless steel. Surface Interface Anal 1990; 16(1-12): 563–4

    Article  Google Scholar 

  158. Rossander-Hultan L, Brune M, Sandstrom B, et al. Competitive inhibition of iron absorption by manganese and zinc in humans. Am J Clin Nutr 1991; 54(1): 152–6

    Google Scholar 

  159. Doherty MJ, Healy M, Richardson SG, et al. Total body iron overload in welder’s siderosis. Occup Environ Med 2004 Jan; 61(1): 82–5

    PubMed  CAS  Google Scholar 

  160. Buckley BT. Report to Judge Kathleen O’Malley, United States District Court, Northern District of Ohio, Eastern Division. Case No 1: 03-CV-17000. Dated 11 Nov 2004.t

  161. Byczkowski S, Cempel M, Gadomska J, et al. A trial for estimating the health condition of welders performing hand electric arc welding: part II. Villepinte: International Institute of Welding; 1968. Doc. 8-334-68

    Google Scholar 

  162. Bergert KD, Voigt H, Holler U. Detection of exposure in welders by determining manganese contents of biological materials. Z Gesamte Inn Med 1982; 37: 504–7

    PubMed  CAS  Google Scholar 

  163. Knight GS, Williams HEM, Hinton D. Elevated plasma manganese levels in welders cutting manganese steel. N Z Med J 1985 Oct 9; 98(788): 870

    PubMed  CAS  Google Scholar 

  164. Jarvisalo J, Olkinuora M, Kiilunen M, et al. Urinary and blood manganese in occupationally nonexposed populations and in manual metal arc welders of mild steel. Int Arch Occup Environ Health 1992; 63(7): 495–501

    Article  PubMed  CAS  Google Scholar 

  165. Luse I, Bake MA, Bergmanis G, et al. Risk assessment of manganese. Cent Eur J Public Health 2000 Jul; 8 Suppl.: 51

    Google Scholar 

  166. Longo WE, Rigler MW, Russell PE. Size distribution measurements and high resolution electron microscopy analysis of welding fume particles. In: Handbook of presentations at Conference on Health Effects of Welding; 2005 Jul 23–24; Morgantown (WV)

    Google Scholar 

  167. Tepper LB. Hazards to health: manganese. N Engl J Med 1961; 16(264): 347–8

    Article  Google Scholar 

  168. Yu IJ, Park JD, Park ES, et al. Manganese distribution in brains of Sprague-Dawley rats after 60 days of stainless steel welding-fume exposure. Neurotoxicology 2003 Dec; 24(6): 777–85

    Article  PubMed  CAS  Google Scholar 

  169. Bowler RM, Gysens S, Diamond E, et al. Neuropsychological sequelae of exposure to welding fumes in a group of occupationally exposed men. Int J Hyg Environ Health 2003 Oct; 206(6): 517–29

    Article  PubMed  Google Scholar 

  170. Bowler RM, Roels H. Exposure to welding fumes and health effects after two years of confined space welding at the San Francisco/Oakland Bridge. In: Handbook of presentations at Conference on Health Effects of Welding; 2005 Jul 23–24; Morgantown (WV)

    Google Scholar 

  171. Wender M, Kabschowa B, Owsianowski M. Nervous system diseases in workers in a large metallurgic plant. Neurol Neurochir Pol 1976; 10(5): 613–20

    PubMed  CAS  Google Scholar 

  172. Koller W, Vetere-Overfield B, Gray C, et al. Environmental risk factors in Parkinson’s disease. Neurology 1990; 40(8): 1218–21

    Article  PubMed  CAS  Google Scholar 

  173. Zayed J, Ducie G, Campanella G, et al. Environmental factors in the aetiology of Parkinson’s Disease. Can J Neurol Sci 1990; 17: 286–91

    PubMed  CAS  Google Scholar 

  174. Wechsler LS, Checkoway H, Franklin GM, et al. A pilot study of occupational and environmental risk factors for Parkinson’s disease. Neurotoxicology 1991; 12(3): 387–92

    PubMed  CAS  Google Scholar 

  175. Hertzman C, Wiens M, Bowering D, et al. Parkinson’s disease: a case control study of occupational and environmental risk factors. Am J Ind Med 1990; 17(3): 349–55

    Article  PubMed  CAS  Google Scholar 

  176. Granieri E, Carreras M, Casetta L, et al. Parkinson’s disease in Ferrara, Italy, 1967 through 1987. Arch Neurol 1991; 48(8): 854–7

    Article  PubMed  CAS  Google Scholar 

  177. Hubble JP, Cao T, Hassanein RE, et al. Risk factors for Parkinson’s disease. Neurology 1993; 43(9): 1693–7

    Article  PubMed  CAS  Google Scholar 

  178. Rybicki BA, Johnson CC, Uman J, et al. Parkinson’s disease mortality and the industrial use of heavy metals in Michigan. Mov Disord 1993; 8(1): 87–92

    Article  PubMed  CAS  Google Scholar 

  179. Semchuk KM, Love EJ, Lee RG. Parkinson’s disease: a test of the multifactorial etiologic hypothesis. Neurology 1993 Jun; 43(6): 1173–80

    Article  PubMed  CAS  Google Scholar 

  180. Wang W, Fang X, Cheng X. A case control study on the environmental risk factors of Parkinson’s disease in Tianjiu, China. Neuroepidemiology 1993; 12: 209–18

    Article  PubMed  CAS  Google Scholar 

  181. Hertzman C, Wiens M, Snow B, et al. A case-control study of Parkinson’s disease in a horticultural region of British Columbia. Mov Disord 1994 Jan; 9(1): 69–75

    Article  PubMed  CAS  Google Scholar 

  182. Rocca WA, Anderson DW, Meneghini F, et al. Occupation, education, and Parkinson’s disease: a case-control study in an Italian population. Mov Disord 1996; 11(2): 201–6

    Article  PubMed  CAS  Google Scholar 

  183. Seidler A, Hellenbrand W, Robra BP, et al. Possible environmental, occupational, and other etiologic factors for Parkinson’s disease: a case-control study in Germany. Neurology 1996 May; 46(5): 1275–84

    Article  PubMed  CAS  Google Scholar 

  184. Schulte PA, Burnett CA, Boeniger MF, et al. Neurodegenerative diseases: occupational occurrence and potential risk factors, 1982 through 1991. Am J Public Health 1996; 86(9): 1281–8

    Article  PubMed  CAS  Google Scholar 

  185. Gorell JM, Johnson CC, Rybicki BA, et al. Occupational exposures to metals as risk factors for Parkinson’s disease. Neurology 1997; 48(3): 650–8

    Article  PubMed  CAS  Google Scholar 

  186. Fall PA, Fredrikson M, Axelson O, et al. Nutritional and occupational factors influencing the risk of Parkinson’s disease: a case-control study in southeastern Sweden. Mov Disord 1999; 14: 28–37

    Article  PubMed  CAS  Google Scholar 

  187. Tsui JK, Calne DB, Wang Y, et al. Occupational risk factors in Parkinson’s disease. Can J Public Health 1999; 90(5): 334–7

    PubMed  CAS  Google Scholar 

  188. Behari M, Srivastava AK, Das RR, et al. Risk factors of Parkinson’s disease in Indian patients. J Neurol Sci 2001; 190(1–2): 49–55

    Article  PubMed  CAS  Google Scholar 

  189. Kirkey KL, Johnson CC, Rybicki BA, et al. Occupational categories at risk for Parkinson’s disease. Am J Ind Med 2001; 39(6): 564–71

    Article  PubMed  CAS  Google Scholar 

  190. Zorzon M, Capus L, Pellegrino A, et al. Familial and environmental risk factors in Parkinson’s disease: a case-control study in north-east Italy. Acta Neurol Scand 2002; 105(2): 77–82

    Article  PubMed  CAS  Google Scholar 

  191. Hakansson N, Gustavsson P, Johansen C, et al. Neurodegenerative diseases in welders and other workers exposed to high levels of magnetic fields. Epidemiology 2003; 14(4): 420–6

    PubMed  Google Scholar 

  192. McDonnell L, Maginnis C, Lewis S, et al. Occupational exposure to solvents and metals and Parkinson’s disease. Neurology 2003 Sep 9; 61(5): 716–7

    Article  PubMed  CAS  Google Scholar 

  193. Goldman SM, Quinlan PJ, Smith AR, et al. Manganese exposure and risk of Parkinson’s disease in twins. Mov Disord 2004; 19Suppl. 9: S162b

    Google Scholar 

  194. Gorell JM, Peterson EL, Rybicki BA, et al. Multiple risk factors for Parkinson’s disease. J Neurol Sci 2004 Feb 15; 217(2): 169–74

    Article  PubMed  Google Scholar 

  195. Park J, Yoo CI, Kim JW, et al. Occupations and Parkinson’s disease: a case-control study in South Korea. Ind Health 2004; 42(3): 352–8

    Article  PubMed  Google Scholar 

  196. Goldman SM, Tanner CM, Olanow CW, et al. Occupation and parkinsonism in three movement disorders clinics. Neurology 2005 Nov 8; 65(9): 1430–5

    Article  PubMed  CAS  Google Scholar 

  197. Park J, Yoo CI, Sim CS, et al. Occupations and Parkinson’s disease: a multi-center case-control study in South Korea. Neurotoxicology 2005; 26(1): 99–105

    Article  PubMed  CAS  Google Scholar 

  198. Racette BA, McGee-Minnich L, Moerlein SM, et al. Welding-related parkinsonism: clinical features, treatment, and pathophysiology. Neurology 2001 Jan 9; 56(1): 8–13

    Article  PubMed  CAS  Google Scholar 

  199. Racette BA, Tabbal SD, Jennings D, et al. Prevalence of parkinsonism and relationship to exposure in a large sample of Alabama welders. Neurology 2005; 64: 230–5

    Article  PubMed  CAS  Google Scholar 

  200. Bernheimer H, Birkmayer W, Hornykiewicz O, et al. Brain dopamine and the syndromes of Parkinson and Huntington: clinical, morphological and neurochemical correlations. J Neurol Sci 1973 Dec; 20(4): 415–55

    Article  PubMed  CAS  Google Scholar 

  201. Fearnley JM, Lozano AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 1991; 114: 2283–301

    Article  PubMed  Google Scholar 

  202. Morrish PK, Sawle GV, Brooks DJ. Clinical and 18Fdopa PET findings in early Parkinson’s disease. J Neurol Neurosurg Psychiatry 1995; 59: 597–600

    Article  PubMed  CAS  Google Scholar 

  203. Witholt R, Gwiazda RH, Smith DR. The Neurobehavioural effects of subchronic manganese exposure in the presence and absence of pre-parkinsonism. Neurotoxicol Teratol 2000; 22: 851–6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author is an accredited specialist in occupational medicine in independent private practice and an Honorary Senior Clinical Lecturer at the Institute of Occupational and Environmental Medicine in the University of Birmingham, England. Whereas, the author has received fees and sponsorship for work done for organisations and companies in and associated with the welding industry, his agreements with these clients and sponsors have included his guaranteed freedom to express and publish his views without prior consultation with them. In consequence, he has felt neither conflict of interests nor any threat to maintaining his independence and objectivity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant McMillan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McMillan, G. Is Electric Arc Welding Linked to Manganism or Parkinson’s Disease?. Toxicol Rev 24, 237–257 (2005). https://doi.org/10.2165/00139709-200524040-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00139709-200524040-00004

Keywords

Navigation