Skip to main content
Log in

Prevention and Treatment of Postmenopausal Osteoporosis

  • Review Article
  • Published:
Treatments in Endocrinology

Abstract

Osteoporosis is a systemic disease characterized by low bone mass and microarchitectural deterioration of the skeleton leading to enhanced bone fragility and an increased risk of fracture. Prior to fracture, diagnosis is established by documenting low bone mass. In the first section of this article we review the clinical use of bone mass measurements and biochemical markers of bone remodeling in selecting patients most in need of preventive therapy at menopause. Women with high bone turnover lose bone at menopause more rapidly than those with normal bone turnover and are more likely to derive benefit from the several preventive therapies available. The second section addresses the available technologies used to diagnose osteoporosis and/or establish fragility fracture risk using noninvasive bone mass measurement and biochemical markers of bone remodeling separately or in combination. In the third section we review the several treatment options available for patients with osteoporosis, including alendronate (alendronic acid), risendronate (risedronic acid), calcitonin, teriparatide, and raloxifene, and the approaches to monitoring the therapeutic response. The final section deals with fall protection — an often forgotten aspect of management of the patient at risk for sustaining and osteoporotic fragility fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Albright F, Smith PH, Richardson AM. Postmenopausal osteoporosis. JAMA 1941; 116: 2465–74

    Article  Google Scholar 

  2. Riggs BL, Khosla S, Melton III LJ. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 2002; 23: 279–302

    Article  PubMed  CAS  Google Scholar 

  3. Aitken JM, Hart DM, Lindsay R. Oestrogen replacement therapy for prevention of osteoporosis after oophorectomy. BMJ 1973; 3(5879): 515–8

    Article  PubMed  CAS  Google Scholar 

  4. Christiansen C, Christensen MS, McNair P, et al. Prevention of early postmenopausal bone loss: controlled 2-year study in 315 normal females. Eur J Clin Invest 1980; 10: 273–9

    Article  PubMed  CAS  Google Scholar 

  5. Pacifici R, Rifas L, Teitelbaum S, et al. Spontaneous release of interleukin 1 from human blood monocytes reflects bone formation in idiopathic osteoporosis. Proc Natl Acad Sci U S A 1987; 84: 4616–20

    Article  PubMed  CAS  Google Scholar 

  6. Stock JL, Coderre JA, McDonald B, et al. Effects of estrogen in vivo and in vitro on spontaneous interleukin-1 release by monocytes from postmenopausal women. J Clin Endocrinol Metab 1989; 68: 364–8

    Article  PubMed  CAS  Google Scholar 

  7. Ralston SH, Russell RG, Gowen M. Estrogen inhibits release of tumor necrosis factor from peripheral blood mononuclear cells in postmenopausal women. J Bone Miner Res 1990; 5: 983–8

    Article  PubMed  CAS  Google Scholar 

  8. Pacifici R, Brown C, Puscheck E, et al. Effect of surgical menopause and estrogen replacement on cytokine release from human blood mononuclear cells. Proc Natl Acad Sci U S A 1991; 88: 5134–8

    Article  PubMed  CAS  Google Scholar 

  9. Hustmyer FG, Walker E, Yu XP, et al. Cytokine production and surface antigen expression by peripheral blood mononuclear cells in postmenopausal osteoporosis. J Bone Miner Res 1993; 8: 51–9

    Article  PubMed  CAS  Google Scholar 

  10. Pacifici R, Vannice JL, Rifas L, et al. Monocytic secretion of interleukin-1 receptor antagonist in normal and osteoporotic women: effects of menopause and estrogen/progesterone therapy. J Clin Endocrinol Metab 1993; 77: 1135–41

    Article  PubMed  CAS  Google Scholar 

  11. Zheng SX, Vrindts Y, Lopez M, et al. Increase in cytokine production (IL-1 beta, IL-6, TNF-alpha but not IFN-gamma, GM-CSF or LIF) by stimulated whole blood cells in postmenopausal osteoporosis. Maturitas 1997; 26: 63–71

    Article  PubMed  CAS  Google Scholar 

  12. Keen RW, Woodford-Richens KL, Lanchbury JS, et al. Allelic variation at the interleukin-1 receptor antagonist gene is associated with early postmenopausal bone loss at the spine. Bone 1998; 23: 367–71

    Article  PubMed  CAS  Google Scholar 

  13. SunyerT, Lewis J, Collin-Osdoby P, et al. Estrogen’s bone-protective effects may involve differential IL-1 receptor regulation in human osteoclast-like cells. J Clin Invest 1999; 103: 1409–18

    Article  Google Scholar 

  14. Abrahamsen B, Bonnevie-Nielsen V, Ebbesen EN, et al. Cytokines and bone loss in a 5-year longitudinal study: hormone replacement therapy suppresses serum soluble interleukin-6 receptor and increases interleukin-1-receptor antagonist: the Danish Osteoporosis Prevention Study. J Bone Miner Res 2000; 15: 1545–54

    Article  PubMed  CAS  Google Scholar 

  15. Pfeilschifter J, Koditz R, Pfohl M, et al. Changes in proinflammatory cytokine activity after menopause. Endocr Rev 2002; 23: 90–119

    Article  PubMed  CAS  Google Scholar 

  16. Nordin BE, Burnet RB, Fitzgerald S, et al. Bone densitometry in clinical practice: longitudinal measurements at three sites in postmenopausal women on five treatments. Climacteric 2001; 4: 235–42

    PubMed  CAS  Google Scholar 

  17. Bjarnason NH, Alexandersen P, Christiansen C. Number of years since menopause: spontaneous bone loss is dependent but response to hormone replacement therapy is independent. Bone 2002; 30: 637–42

    Article  PubMed  CAS  Google Scholar 

  18. Dawson-Hughes B, Dallai GE, Krall EA, et al. A controlled trial of the effect of calcium supplementation on bone density in postmenopausal women. N Engl J Med 1990; 323: 878–83

    Article  PubMed  CAS  Google Scholar 

  19. Delmas PD, Bjarnason NH, Mitlak BH, et al. Effects of raloxifene on bone mineral density, serum cholesterol concentrations, and uterine endometrium in postmenopausal women. N Engl J Med 1997; 337: 1641–7

    Article  PubMed  CAS  Google Scholar 

  20. Thiebaud D, Bigler JM, Renteria S, et al. A 3-year study of prevention of postmenopausal bone loss: conjugated equine estrogens plus medroxypro-gesterone acetate versus tibolone. Climacteric 1998; 1: 202–10

    Article  PubMed  CAS  Google Scholar 

  21. Heikkinen J, Vaheri R, Kainulainen P, et al. Long-term continuous combined hormone replacement therapy in the prevention of postmenopausal bone loss: a comparison of high- and low-dose estrogen-progestin regimens. Osteoporos Int 2000; 11: 929–37

    Article  PubMed  CAS  Google Scholar 

  22. Delmas PD, Pornel B, Felsenberg D, et al. Three-year follow-up of the use of transdermal 17beta-estradiol matrix patches for the prevention of bone loss in early postmenopausal women. Am J Obstet Gynecol 2001; 184: 32–40

    Article  PubMed  CAS  Google Scholar 

  23. Lindsay R, Gallagher JC, Kleerekoper M, et al. Effect of lower doses of conjugated equine estrogens with and without medroxyprogesterone acetate on bone in early postmenopausal women. JAMA 2002; 287: 2668–76

    Article  PubMed  CAS  Google Scholar 

  24. Arrenbrecht S, Boermans AJ. Effects of transdermal estradiol delivered by a matrix patch on bone density in hysterectomized, postmenopausal women: a 2-year placebo-controlled trial. Osteoporos Int 2002; 13: 176–83

    Article  PubMed  CAS  Google Scholar 

  25. McClung M, Clemmesen B, Daifotis A, et al. Alendronate prevents postmenopausal bone loss in women without osteoporosis: a double-blind, randomized, controlled trial. Alendronate Osteoporosis Prevention Study Group. Ann Intern Med 1998; 128: 253–61

    PubMed  CAS  Google Scholar 

  26. Ravn P, Bidstrup M, Wasnich RD, et al. Alendronate and estrogen-progestin in the long-term prevention of bone loss: four-year results from the early postmenopausal intervention cohort study: a randomized, controlled trial. Ann Intern Med 1999; 131: 935–42

    PubMed  CAS  Google Scholar 

  27. Ravn P, Weiss SR, Rodriguez-Portales JA, et al. Alendronate in early postmenopausal women: effects on bone mass during long-term treatment and after withdrawal. Alendronate Osteoporosis Prevention Study Group. J Clin Endocrinol Metab 2000; 85: 1492–7

    Article  PubMed  CAS  Google Scholar 

  28. Rossini M, Gatti D, Girardello S, et al. Effects of two intermittent alendronate regimens in the prevention or treatment of postmenopausal osteoporosis. Bone 2000; 27: 119–22

    Article  PubMed  CAS  Google Scholar 

  29. Mortensen L, Charles P, Bekker PJ, et al. Risedronate increases bone mass in an early postmenopausal population: two years of treatment plus one year of follow-up. J Clin Endocrinol Metab 1998; 83: 396–402

    Article  PubMed  CAS  Google Scholar 

  30. Delmas PD, Balena R, Confravreux E, et al. Bisphosphonate risedronate prevents bone loss in women with artificial menopause due to chemotherapy of breast cancer: a double-blind, placebo-controlled study. J Clin Oncol 1997; 15: 955–62

    PubMed  CAS  Google Scholar 

  31. Hosking DJ, Ross PD, Thompson DE, et al. Evidence that increased calcium intake does not prevent early postmenopausal bone loss. Clin Ther 1998 Sep–Oct; 20(5): 933–44

    Article  PubMed  CAS  Google Scholar 

  32. Komulainen M, Tuppurainen MT, Kroger H, et al. Vitamin D and HRT: no benefit additional to that of HRT alone in prevention of bone loss in early postmenopausal women: a 2.5-year randomized placebo-controlled study. Osteoporos Int 1997; 7: 126–32

    Article  PubMed  CAS  Google Scholar 

  33. Komulainen M, Kroger H, Tuppurainen MT, et al. Prevention of femoral and lumbar bone loss with hormone replacement therapy and vitamin D3 in early postmenopausal women: a population-based 5-year randomized trial. J Clin Endocrinol Metab 1999; 84: 546–52

    Article  PubMed  CAS  Google Scholar 

  34. Rolnick SJ, Kopher R, Jackson J, et al. What is the impact of osteoporosis education and bone mineral density testing for postmenopausal women in a managed care setting? Menopause 2001; 8: 141–8

    Article  PubMed  CAS  Google Scholar 

  35. Marci CD, Anderson WB, Viechnicki MB, et al. Bone mineral densitometry substantially influences health-related behaviors of postmenopausal women. Calcif Tissue Int 2000; 66: 113–8

    Article  PubMed  CAS  Google Scholar 

  36. Pressman A, Forsyth B, Ettinger B, et al. Initiation of osteoporosis treatment after bone mineral density testing. Osteoporos Int 2001; 12: 337–42

    Article  PubMed  CAS  Google Scholar 

  37. Colon-Emeric CS, Colon-Emeric CS, Pieper CF, et al. Can historical and functional risk factors be used to predict fractures in community-dwelling older adults? Development and validation of a clinical tool. Osteoporos Int 2002; 13: 955–61

    Article  PubMed  CAS  Google Scholar 

  38. Johnston Jr CC, Hui SL, Witt RM, et al. Early menopausal changes in bone mass and sex steroids. J Clin Endocrinol Metab 1985; 61: 905–11

    Article  PubMed  CAS  Google Scholar 

  39. Sowers MR, Clark MK, Hollis B, et al. Radial bone mineral density in pre- and perimenopausal women: a prospective study of rates and risk factors for loss. J Bone Miner Res 1992; 7: 647–57

    Article  PubMed  CAS  Google Scholar 

  40. Pouilles JM, Tremollieres F, Ribot C. The effects of menopause on longitudinal bone loss from the spine. Calcif Tissue Int 1993; 52: 340–3

    Article  PubMed  CAS  Google Scholar 

  41. Reeve J, Pearson J, Mitchell A, et al. Evolution of spinal bone loss and biochemical markers of bone remodeling after menopause in normal women. Calcif Tissue Int 1995; 57: 105–10

    Article  PubMed  CAS  Google Scholar 

  42. Pouilles JM, Tremollieres F, Ribot C. Effect of menopause on femoral and vertebral bone loss. J Bone Miner Res 1995 Oct; 10(10): 1531–6

    Article  PubMed  CAS  Google Scholar 

  43. Slemenda C, Longcope C, Peacock M, et al. Sex steroids, bone mass, and bone loss: a prospective study of pre-, peri-, and postmenopausal women. J Clin Invest 1996; 97: 14–21

    Article  PubMed  CAS  Google Scholar 

  44. Pouilles JM, Tremollieres F, Ribot C. Variability of vertebral and femoral postmenopausal bone loss: a longitudinal study. Osteoporos Int 1996; 6: 320–4

    Article  PubMed  CAS  Google Scholar 

  45. Reeve J, Walton J, Russell LJ, et al. Determinants of the first decade of bone loss after menopause at spine, hip and radius. QJM 1999; 92: 261–73

    Article  PubMed  CAS  Google Scholar 

  46. Ahlborg HG, Johnell O, Nilsson BE, et al. Bone loss in relation to menopause: a prospective study during 16 years. Bone 2001; 28: 327–31

    Article  PubMed  CAS  Google Scholar 

  47. Rogers A, Hannon RA, Eastell R. Biochemical markers as predictors of rates of bone loss after menopause. J Bone Miner Res 2000; 15: 1398–404

    Article  PubMed  CAS  Google Scholar 

  48. Garnero P, Sornay-Rendu E, Duboeuf F, et al. Markers of bone turnover predict postmenopausal forearm bone loss over 4 years: the OFELY study. J Bone Miner Res 1999; 14: 1614–21

    Article  PubMed  CAS  Google Scholar 

  49. Johnell O, Oden A, De Laet C, et al. Biochemical indices of bone turnover and the assessment of fracture probability. Osteoporos Int 2002; 13: 523–6

    Article  PubMed  CAS  Google Scholar 

  50. National Osteoporosis Foundation. Physician’s guide to prevention and treatment of osteoporosis [online]. Available from URL: http://www.nof.org/physguide/ index.htm [Accessed 2003 Jul 10]

  51. Hodgson SF, Watts NB, Bilezikian JP, et al., for the American Association of Clinical Endocrinologists. American Association of Clinical Endocrinologists 2001 medical guidelines for clinical practice for the prevention and management of postmenopausal osteoporosis. Endocr Pract 2001 Jul–Aug; 7 (4): 293-312. Available from URL: http://www.aace.com/clin/guidelines/osteoporosis2001.pdf [Accessed 2003 Jul 10]

  52. UK Department of Health. Summary and recommendations of the report “Osteoporosis — clinical guidelines for the prevention and treatment” [online]. Available from URL: http://www.doh.gov.uk/osteorep.htm [Accessed 2003 Jul 10]

  53. Scibel MJ, Lang M, Geilenkeuser WJ. Interlaboratory variation of biochemical markers of bone turnover. Clin Chem 2001; 47: 1443–50

    Google Scholar 

  54. Kleerekoper M. Biochemical markers of bone turnover: why theory, research, and clinical practice are still in conflict. Clin Chem 2001; 47: 1347–9

    PubMed  CAS  Google Scholar 

  55. Fall PM, Kennedy D, Smith JA, et al. Comparison of serum and urine assays for biochemical markers of bone resorption in postmenopausal women with and without hormone replacement therapy and in men. Osteoporos Int 2000; 11: 481–5

    Article  PubMed  CAS  Google Scholar 

  56. Woitge HW, Pecherstorfer M, Li Y, et al. Novel serum markers of bone resorption: clinical assessment and comparison with established urinary indices. J Bone Miner Res 1999; 14: 792–801

    Article  PubMed  CAS  Google Scholar 

  57. Gertz BJ, Clemens JD, Holland SD, et al. Application of a new serum assay for type I collagen cross-linked N-telopeptides: assessment of diurnal changes in bone turnover with and without alendronate treatment. Calcif Tissue Int 1998 Aug; 63(2): 102–6

    Article  PubMed  CAS  Google Scholar 

  58. Eastell R, Mallinak N, Weiss S, et al. Biological variability of serum and urinary N-telopeptides of type I collagen in postmenopausal women. J Bone Miner Res 2000; 15: 594–8

    Article  PubMed  CAS  Google Scholar 

  59. Christgau S, Bitsch-Jensen O, Hanover Bjarnason N, et al. Serum CrossLaps for monitoring the response in individuals undergoing antiresorptive therapy. Bone 2000; 26: 505–11

    Article  PubMed  CAS  Google Scholar 

  60. Herrmann M, Pape G, Herrmann W. Stability of serum beta-crosslaps during storage: influence of pH and storage temperature. Clin Chem 2001; 47: 939–40

    PubMed  CAS  Google Scholar 

  61. Scariano JK, Garry PJ, Montoya GD, et al. Critical differences in the serial measurement of three biochemical markers of bone turnover in the sera of pre- and postmenopausal women. Clin Biochem 2001; 34: 639–44

    Article  PubMed  CAS  Google Scholar 

  62. Rosenquist C, Fledelius C, Christgau S, et al. Serum CrossLaps One Step ELISA. First application of monoclonal antibodies for measurement in serum of bone-related degradation products from C-terminal telopeptides of type I collagen. Clin Chem 1998; 44: 2281–9

    PubMed  CAS  Google Scholar 

  63. Christgau S, Rosenquist C, Alexandersen P, et al. Clinical evaluation of the Serum CrossLaps One Step ELISA, a new assay measuring the serum concentration of bone-derived degradation products of type I collagen C-telopeptides. Clin Chem 1998; 44: 2290–300

    PubMed  CAS  Google Scholar 

  64. Wichers M, Schmidt E, Bidlingmaier F, et al. Diurnal rhythm of CrossLaps in human serum. Clin Chem 1999; 45: 1858–60

    PubMed  CAS  Google Scholar 

  65. Christgau S. Circadian variation in serum CrossLaps concentration is reduced in fasting individuals [comment]. Clin Chem 2000; 46: 431

    PubMed  CAS  Google Scholar 

  66. Rosen HN, Moses AC, Garber J, et al. Serum CTX: a new marker of bone resorption that shows treatment effect more often than other markers because of low coefficient of variability and large changes with bisphosphonate therapy. Calcif Tissue Int 2000; 66: 100–3

    Article  PubMed  CAS  Google Scholar 

  67. Clowes JA, Hannon RA, Yap TS, et al. Effect of feeding on bone turnover markers and its impact on biological variability of measurements. Bone 2002; 30(6): 886–90

    Article  PubMed  CAS  Google Scholar 

  68. Okabe R, Nakatsuka K, Inaba M, et al. Clinical evaluation of the Elecsys beta-CrossLaps serum assay, a new assay for degradation products of type I collagen C-telopeptides. Clin Chem 2001; 47: 1410–4

    PubMed  CAS  Google Scholar 

  69. Garnero P, Borel O, Delmas PD. Evaluation of a fully automated serum assay for C-terminal cross-linking telopeptide of type I collagen in osteoporosis. Clin Chem 2001; 47: 694–702

    PubMed  CAS  Google Scholar 

  70. Rossouw JE, Anderson GL, Prentice RL, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA 2002; 288: 321–33

    Article  PubMed  CAS  Google Scholar 

  71. Nelson HD, Helfand M, Woolf SH, et al. Screening for postmenopausal osteoporosis: a review of the evidence for the US Preventive Services Task Force. Ann Intern Med 2002; 137: 529–41

    PubMed  Google Scholar 

  72. US Preventive Services Task Force. Screening for osteoporosis in postmenopausal women: recommendations and rationale. Ann Intern Med 2002; 137: 526–8

    Google Scholar 

  73. Kiel DP, Felson DT, Anderson JJ, et al. Hip fracture and the use of estrogens in postmenopausal women. The Framingham Study. N Engl J Med 1987; 317: 1169–74

    Article  PubMed  CAS  Google Scholar 

  74. Naessen T, Persson I, Adami HO, et al. Hormone replacement therapy and the risk for first hip fracture: a prospective, population-based cohort study. Ann Intern Med 1990; 113: 95–103

    PubMed  CAS  Google Scholar 

  75. Cauley JA, Seeley DG, Ensrud K, et al. Estrogen replacement therapy and fractures in older women: study of Osteoporotic Fractures Research Group. Ann Intern Med 1995; 122: 9–16

    PubMed  CAS  Google Scholar 

  76. Mosekilde L, Beck-Nielsen H, Sorensen OH, et al. Hormonal replacement therapy reduces forearm fracture incidence in recent postmenopausal women: results of the Danish Osteoporosis Prevention Study. Maturitas 2000 Oct 31; 36(3): 181–93

    Article  PubMed  CAS  Google Scholar 

  77. Torgerson DJ, Bell-Syer SE. Hormone replacement therapy and prevention of vertebral fractures: a meta-analysis of randomised trials. BMC Musculoskelet Disord 2001; 2(1): 7

    Article  PubMed  CAS  Google Scholar 

  78. Torgerson DJ, Bell-Syer SE. Hormone replacement therapy and prevention of nonvertebral fractures: a meta-analysis of randomized trials. JAMA 2001; 285: 2891–7

    Article  PubMed  CAS  Google Scholar 

  79. Steinberg KK, Smith SJ, Thacker SB, et al. Breast cancer risk and duration of estrogen use: the role of study design in meta-analysis. Epidemiology 1994; 5: 415–21

    Article  PubMed  CAS  Google Scholar 

  80. Colditz GA, Egan KM, Stampfer MJ. Hormone replacement therapy and risk of breast cancer: results from epidemiologic studies. Am J Obstet Gynecol 1993; 168: 1473–80

    PubMed  CAS  Google Scholar 

  81. Sillero-Arenas M, Delgado-Rodriguez M, Rodigues-Canteras R, et al. Menopausal hormone replacement therapy and breast cancer: a meta-analysis. Obstet Gynecol 1992; 79: 286–94

    PubMed  CAS  Google Scholar 

  82. Steinberg KK, Thacker SB, Smith SJ, et al. A meta-analysis of the effect of estrogen replacement therapy on the risk of breast cancer. JAMA 1991; 265: 1985–90

    Article  PubMed  CAS  Google Scholar 

  83. Grodstein F, Stampfer MJ, Goldhaber SZ, et al. Prospective study of exogenous hormones and risk of pulmonary embolism in women. Lancet 1996; 348: 983–7

    Article  PubMed  CAS  Google Scholar 

  84. Jick H, Derby LE, Myers MW, et al. Risk of hospital admission for idiopathic venous thromboembolism among users of postmenopausal oestrogens. Lancet 1996; 348: 981–3

    Article  PubMed  CAS  Google Scholar 

  85. Hulley S, Furberg C, Barrett-Connor E, et al. Noncardiovascular disease outcomes during 6.8 years of hormone therapy: Heart and Estrogen/progestin Replacement Study follow-up (HERS II). JAMA 2002; 288: 58–66

    Article  PubMed  CAS  Google Scholar 

  86. Herrington DM, Vittinghoff E, Howard TD, et al. Factor V Leiden, hormone replacement therapy, and risk of venous thromboembolic events in women with coronary disease. Arterioscler Thromb Vasc Biol 2002; 22: 1012–7

    Article  PubMed  CAS  Google Scholar 

  87. Hoibraaten E, Qvigstad E, Arnesen H, et al. Increased risk of recurrent venous thromboembolism during hormone replacement therapy: results of the randomized, double-blind, placebo-controlled estrogen in venous thromboembolism trial (EVTET). Thromb Haemost 2000; 84: 961–7

    PubMed  CAS  Google Scholar 

  88. Hulley S, Grady D, Bush T, et al. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group. JAMA 1998; 280: 605–13

    Article  PubMed  CAS  Google Scholar 

  89. Grady D, Herrington D, Bittner V, et al. Cardiovascular disease outcomes during 6.8 years of hormone therapy: Heart and Estrogen/progestin Replacement Study follow-up (HERS II). JAMA 2002; 288: 49–57

    Article  PubMed  Google Scholar 

  90. Herrington DM, Reboussin DM, Klein KP, et al. The estrogen replacement and atherosclerosis (ERA) study: study design and baseline characteristics of the cohort. Control Clin Trials 2000; 21: 257–85

    Article  PubMed  CAS  Google Scholar 

  91. Grodstein F, Manson JE, Colditz GA, et al. A prospective, observational study of postmenopausal hormone therapy and primary prevention of cardiovascular disease. Ann Intern Med 2000; 133: 933–41

    PubMed  CAS  Google Scholar 

  92. Hu FB, Grodstein F, Hennekens CH, et al. Age at natural menopause and risk of cardiovascular disease. Arch Intern Med 1999; 159: 1061–6

    Article  PubMed  CAS  Google Scholar 

  93. Kleerekoper M. Lessons from the skeleton: was the Women’s Health Initiative (WHI) a primary prevention trial? Osteoporos Int 2002; 13: 685–7

    Article  PubMed  Google Scholar 

  94. Hays J, Ockene JK, Brunner RL, et al. Effects of estrogen plus progestin on health-related quality of life. N Engl J Med 2003; 348(19): 1839–54

    Article  PubMed  CAS  Google Scholar 

  95. Lowe CE, Depew WT, Vanner SJ, et al. Upper gastrointestinal toxicity of alendronate. Am J Gastroenterol 2000; 95: 634–40

    Article  PubMed  CAS  Google Scholar 

  96. Bauer DC, Black D, Ensrud K, et al. Upper gastrointestinal tract safety profile of alendronate: the fracture intervention trial. Arch Intern Med 2000; 160: 517–25

    Article  PubMed  CAS  Google Scholar 

  97. Marshall JK, Rainsford KD, James C, et al. A randomized controlled trial to assess alendronate-associated injury of the upper gastrointestinal tract. Aliment Pharmacol Ther 2000; 14: 1451–7

    Article  PubMed  CAS  Google Scholar 

  98. Lanza FL, Hunt RH, Thomson AB, et al. Endoscopic comparison of esophageal and gastroduodenal effects of risedronate and alendronate in postmenopausal women. Gastroenterology 2000; 119: 631–8

    Article  PubMed  CAS  Google Scholar 

  99. Adachi JD, Adami S, Miller PD, et al. Tolerability of risedronate in postmenopausal women intolerant of alendronate. Aging (Milano) 2001; 13: 347–54

    CAS  Google Scholar 

  100. Lanza FL, Rack MF, Li Z, et al. Placebo-controlled, randomized, evaluator-blinded endoscopy study of risedronate vs aspirin in healthy postmenopausal women. Aliment Pharmacol Ther 2000; 14: 1663–70

    Article  PubMed  CAS  Google Scholar 

  101. Davies GC, Huster WJ, Shen W, et al. Endometrial response to raloxifene compared with placebo, cyclical hormone replacement therapy, and unopposed estrogen in postmenopausal women. Menopause 1999; 6: 188–95

    Article  PubMed  CAS  Google Scholar 

  102. Davies GC, Huster WJ, Lu Y, et al. Adverse events reported by postmenopausal women in controlled trials with raloxifene. Obstet Gynecol 1999; 93: 558–65

    Article  PubMed  CAS  Google Scholar 

  103. Cohen FJ, Lu Y. Characterization of hot flashes reported by healthy postmenopausal women raloxifene or placebo during osteoporosis prevention trials. Maturitas 2000; 34: 65–73

    Article  PubMed  CAS  Google Scholar 

  104. Brinker A, Beitz J. Spontaneous reports of pulmonary embolism in association with raloxifene [letter]. Obstet Gynecol 2001 Dec; 98(6): 1151

    Article  PubMed  CAS  Google Scholar 

  105. Cohen FJ, Watts S, Shah A, et al. Uterine effects of 3-year raloxifene therapy in postmenopausal women younger than age 60. Obstet Gynecol 2000; 95: 104–10

    Article  PubMed  CAS  Google Scholar 

  106. Cummings SR, Duong T, Kenyon E, et al. Serum estradiol level and risk of breast cancer during treatment with raloxifene. JAMA 2002; 287: 216–20

    Article  PubMed  CAS  Google Scholar 

  107. Cauley JA, Norton L, Lippman ME, et al. Continued breast cancer risk reduction in postmenopausal women treated with raloxifene: 4-year results from the MORE trial: multiple outcomes of raloxifene evaluation. Breast Cancer Res Treat 2001; 65: 125–34

    Article  PubMed  CAS  Google Scholar 

  108. World Health Organization. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: report of a WHO Study Group. World Health Organ Tech Rep Ser 1994; 843: 1–129

    Google Scholar 

  109. Ross PD, Genant HK, Davis JW, et al. Predicting vertebral fracture incidence from prevalent fractures and bone density among non-black, osteoporotic women. Osteoporos Int 1993; 3: 120–6

    Article  PubMed  CAS  Google Scholar 

  110. Ensrud KE, Black DM, Palermo L, et al. Treatment with alendronate prevents fractures in women at highest risk: results from the Fracture Intervention Trial. Arch Intern Med 1997; 157: 2617–24

    Article  PubMed  CAS  Google Scholar 

  111. Ettinger B, Black DM, Mitlak BH, et al. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA 1999; 282(7): 637–45

    Article  PubMed  CAS  Google Scholar 

  112. Black DM, Arden NK, Palermo L, et al. Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures: study of Osteoporotic Fractures Research Group. J Bone Miner Res 1999; 14: 821–8

    Article  PubMed  CAS  Google Scholar 

  113. Nevitt MC, Ross PD, Palermo L, et al. Association of prevalent vertebral fractures, bone density, and alendronate treatment with incident vertebral fractures: effect of number and spinal location of fractures: the Fracture Intervention Trial Research Group. Bone 1999; 25: 613–9

    Article  PubMed  CAS  Google Scholar 

  114. Melton III LJ, Atkinson EJ, Cooper C, et al. Vertebral fractures predict subsequent fractures. Osteoporos Int 1999; 10: 214–21

    Article  PubMed  Google Scholar 

  115. Klotzbuecher CM, Ross PD, Landsman PB, et al. Patients with prior fractures have an increased risk of future fractures: summary of the literature and statistical synthesis. J Bone Miner Res 2000; 15: 721–39

    Article  PubMed  CAS  Google Scholar 

  116. Johnell O, Oden A, Caulin F, et al. Acute and long-term increase in fracture risk after hospitalization for vertebral fracture. Osteoporos Int 2001; 12: 207–14

    Article  PubMed  CAS  Google Scholar 

  117. Lindsay R, Silverman SL, Cooper C, et al. Risk of new vertebral fracture in the year following a fracture. JAMA 2001; 285: 320–3

    Article  PubMed  CAS  Google Scholar 

  118. Lin W, Qin YX, Rubin C. Ultrasonic wave propagation in trabecular bone predicted by the stratified model. Ann Biomed Eng 2001; 29: 781–90

    Article  PubMed  CAS  Google Scholar 

  119. Nicholson PH, Müller R, Cheng XG, et al. Quantitative ultrasound and trabecular architecture in the human calcaneus. J Bone Miner Res 2001; 16: 1886–92

    Article  PubMed  CAS  Google Scholar 

  120. Kang C, Paley M, Ordidge R, et al. In vivo MRI measurements of bone quality in the calcaneus: a comparison with DXA and ultrasound. Osteoporos Int 1999; 9: 65–74

    Article  PubMed  CAS  Google Scholar 

  121. Newitt DC, Majumdar S, van RB, et al. In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius. Osteoporos Int 2002; 13: 6–17

    Article  PubMed  CAS  Google Scholar 

  122. van Rietbergen B, Majumdar S, Newitt D, et al. High-resolution MRI and micro-FE for the evaluation of changes in bone mechanical properties during longitudinal clinical trials: application to calcaneal bone in postmenopausal women after one year of idoxifene treatment. Clin Biomech (Bristol, Avon) 2002; 17: 81–8

    Article  Google Scholar 

  123. Wehrli FW, Hwang SN, Song HK, et al. Visualization and analysis of trabecular bone architecture in the limited spatial resolution regime of in vivo micro-MRI. Adv Exp Med Biol 2001; 496: 153–64

    Article  PubMed  CAS  Google Scholar 

  124. Borah B, Gross GJ, Dufresne TE, et al. Three-dimensional microimaging (MRmicroI and microCT), finite element modeling, and rapid prototyping provide unique insights into bone architecture in osteoporosis. Anat Rec 2001; 265: 101–10

    Article  PubMed  CAS  Google Scholar 

  125. Eriksen EF, Hodgson SF, Eastell R, et al. Cancellous bone remodeling in type I (postmenopausal) osteoporosis: quantitative assessment of rates of formation, resorption, and bone loss at tissue and cellular levels. J Bone Miner Res 1990; 5: 311–9

    Article  PubMed  CAS  Google Scholar 

  126. Parfitt AM, Villanueva AR, Foldes J, et al. Relations between histologic indices of bone formation: implications for the pathogenesis of spinal osteoporosis. J Bone Miner Res 1995; 10: 466–73

    Article  PubMed  CAS  Google Scholar 

  127. Melton III LJ, Khosla S, Atkinson EJ, et al. Relationship of bone turnover to bone density and fractures. J Bone Miner Res 1997; 12: 1083–91

    Article  PubMed  Google Scholar 

  128. Riggs BL, Melton III LJ. Bone turnover matters: the raloxifene treatment paradox of dramatic decreases in vertebral fractures without commensurate increases in bone density. J Bone Miner Res 2002; 17: 11–4

    Article  PubMed  Google Scholar 

  129. Parfitt AM. High bone turnover is intrinsically harmful: two paths to a similar conclusion. The Parfitt view. J Bone Miner Res 2002; 17: 1558–9

    Article  PubMed  Google Scholar 

  130. Garnero P, Hausherr E, Chapuy MC, et al. Markers of bone resorption predict hip fracture in elderly women: the EPIDOS Prospective Study. J Bone Miner Res 1996; 11: 1531–8

    Article  PubMed  CAS  Google Scholar 

  131. Luukinen H, Kakonen SM, Pettersson K, et al. Strong prediction of fractures among older adults by the ratio of carboxylated to total serum osteocalcin. J Bone Miner Res 2000; 15: 2473–8

    Article  PubMed  CAS  Google Scholar 

  132. Chapurlat RD, Garnero P, Breart G, et al. Serum type I collagen breakdown product (serum CTX) predicts hip fracture risk in elderly women: the EPIDOS study. Bone 2000; 27: 283–6

    Article  PubMed  CAS  Google Scholar 

  133. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 1996; 312: 1254–9

    Article  PubMed  CAS  Google Scholar 

  134. Torgerson DJ, Campbell MK, Thomas RE, et al. Prediction of perimenopausal fractures by bone mineral density and other risk factors. J Bone Miner Res 1996; 11: 293–7

    Article  PubMed  CAS  Google Scholar 

  135. Duppe H, Gardsell P, Nilsson B, et al. A single bone density measurement can predict fractures over 25 years. Calcif Tissue Int 1997; 60: 171–4

    Article  PubMed  CAS  Google Scholar 

  136. Bauer DC, Gluer CC, Cauley JA, et al. Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women: a prospective study. Study of Osteoporotic Fractures Research Group. Arch Intern Med 1997; 157: 629–34

    Article  PubMed  CAS  Google Scholar 

  137. Frost ML, Blake GM, Fogelman I. Quantitative ultrasound and bone mineral density are equally strongly associated with risk factors for osteoporosis. J Bone Miner Res 2001; 16: 406–16

    Article  PubMed  CAS  Google Scholar 

  138. Siris ES, Miller PD, Barrett-Connor E, et al. Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women: results from the National Osteoporosis Risk Assessment. JAMA 2001; 286: 2815–22

    Article  PubMed  CAS  Google Scholar 

  139. Gnudi S, Malavolta N, Lisi L, et al. Bone mineral density and bone loss measured at the radius to predict the risk of nonspinal osteoporotic fracture. J Bone Miner Res 2001; 16: 1130–5

    Article  PubMed  CAS  Google Scholar 

  140. Miller PD, Siris ES, Barrett-Connor E, et al. Prediction of fracture risk in postmenopausal white women with peripheral bone densitometry: evidence from the National Osteoporosis Risk Assessment. J Bone Miner Res 2002; 17: 2222–30

    Article  PubMed  Google Scholar 

  141. Faulkner KG, von Stetten E, Miller P. Discordance in patient classification using T-scores. J Clin Densitom 1999; 2: 343–50

    Article  PubMed  CAS  Google Scholar 

  142. Devogelaer JP, Broil H, Correa-Rotter R, et al. Oral alendronate induces progressive increases in bone mass of the spine, hip, and total body over 3 years in postmenopausal women with osteoporosis. Bone 1996; 18: 141–50

    Article  PubMed  CAS  Google Scholar 

  143. Black DM, Cummings SR, Karpf DB, et al. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures: Fracture Intervention Trial Research Group. Lancet 1996; 348: 1535–41

    Article  PubMed  CAS  Google Scholar 

  144. Tucci JR, Tonino RP, Emkey RD, et al. Effect of three years of oral alendronate treatment in postmenopausal women with osteoporosis. Am J Med 1996; 101: 488–501

    Article  PubMed  CAS  Google Scholar 

  145. Cummings SR, Black DM, Thompson DE, et al. Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the Fracture Intervention Trial. JAMA 1998; 280: 2077–82

    Article  PubMed  CAS  Google Scholar 

  146. Felsenberg D, Alenfeld F, Bock O, et al. Placebo-controlled multicenter study of oral alendronate in postmenopausal osteoporotic women. FOSIT-Study-Group. Fosamax International Trial. Maturitas 1998; 31: 35–44

    CAS  Google Scholar 

  147. Pols HA, Felsenberg D, Hanley DA, et al. Multinational, placebo-controlled, randomized trial of the effects of alendronate on bone density and fracture risk in postmenopausal women with low bone mass: results of the FOSIT study. Fosamax International Trial Study Group. Osteoporos Int 1999; 9: 461–8

    Article  PubMed  CAS  Google Scholar 

  148. Black DM, Thompson DE, Bauer DC, et al. Fracture risk reduction with alendronate in women with osteoporosis: the Fracture Intervention Trial. FIT Research Group. J Clin Endocrinol Metab 2000; 85: 4118–24

    Article  PubMed  CAS  Google Scholar 

  149. Harris ST, Watts NB, Genant HK, et al. Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial: Vertebral Efficacy With Risedronate Therapy (VERT) Study Group. JAMA 1999; 282: 1344–52

    Article  PubMed  CAS  Google Scholar 

  150. Reginster J, Minne HW, Sorensen OH, et al. Randomized trial of the effects of risedronate on vertebral fractures in women with established postmenopausal osteoporosis: Vertebral Efficacy with Risedronate Therapy (VERT) Study Group. Osteoporos Int 2000; 11: 83–91

    Article  PubMed  CAS  Google Scholar 

  151. Ellerington MC, Hillard TC, Whitcroft SI, et al. Intranasal salmon calcitonin for the prevention and treatment of postmenopausal osteoporosis. Calcif Tissue Int 1996; 59: 6–11

    Article  PubMed  CAS  Google Scholar 

  152. Chesnut III CH, Silverman S, Andriano K, et al. A randomized trial of nasal spray salmon calcitonin in postmenopausal women with established osteoporosis: the prevent recurrence of osteoporotic fractures study. PROOF Study Group. Am J Med 2000; 109(4): 267–76

    Article  PubMed  CAS  Google Scholar 

  153. Lufkin EG, Whitaker MD, Nickelsen T, et al. Treatment of established postmenopausal osteoporosis with raloxifene: a randomized trial. J Bone Miner Res 1998; 13: 1747–54

    Article  PubMed  CAS  Google Scholar 

  154. McClung MR, Geusens P, Miller PD, et al. Effect of risedronate on the risk of hip fracture in elderly women: Hip Intervention Program Study Group. N Engl J Med 2001; 344: 333–40

    Article  PubMed  CAS  Google Scholar 

  155. Liberman UA, Weiss SR, Broil J, et al. Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis: the Alendronate Phase III Osteoporosis Treatment Study Group. N Engl J Med 1995; 333: 1437–43

    Article  PubMed  CAS  Google Scholar 

  156. Downs Jr RW, Bell NH, Ettinger MP, et al. Comparison of alendronate and intranasal calcitonin for treatment of osteoporosis in postmenopausal women. J Clin Endocrinol Metab 2000; 85: 1783–8

    Article  PubMed  CAS  Google Scholar 

  157. Johnell O, Scheele WH, Lu Y, et al. Additive effects of raloxifene and alendronate on bone density and biochemical markers of bone remodeling in postmenopausal women with osteoporosis. J Clin Endocrinol Metab 2002; 87: 985–92

    Article  PubMed  CAS  Google Scholar 

  158. Bone HG, Greenspan SL, McKeever C, et al. Alendronate and estrogen effects in postmenopausal women with low bone mineral density: Alendronate/Estrogen Study Group. J Clin Endocrinol Metab 2000 Feb; 85(2): 720–6

    Article  PubMed  CAS  Google Scholar 

  159. Prestwood KM, Gunness M, Muchmore DB, et al. A comparison of the effects of raloxifene and estrogen on bone in postmenopausal women. J Clin Endocrinol Metab 2000; 85: 2197–202

    Article  PubMed  CAS  Google Scholar 

  160. Cranney A, Guyatt G, Griffith L, et al., for the Osteoporosis Methodology Group and The Osteoporosis Research Advisory Group. Meta-analyses of therapies for postmenopausal osteoporosis. IX: summary of meta-analyses of therapies for postmenopausal osteoporosis. Endocr Rev 2002 Aug; 23(4): 570–8

    Article  PubMed  CAS  Google Scholar 

  161. Wimalawansa SJ. A four-year randomized controlled trial of hormone replacement and bisphosphonate, alone or in combination, in women with postmenopausal osteoporosis. Am J Med 1998; 104: 219–26

    Article  PubMed  CAS  Google Scholar 

  162. Greenspan SL, Resnick NM, Parker RA. Combination therapy with hormone replacement and aledronate for prevention of bone loss in elderly women: a randomized controlled trial. JAMA 2003; 289: 2525–33

    Article  PubMed  CAS  Google Scholar 

  163. Lindsay R, Cosman F, Lobo RA, et al. Addition of alendronate to ongoing hormone replacement therapy in the treatment of osteoporosis: a randomized, controlled clinical trial. J Clin Endocrinol Metab 1999; 84: 3076–81

    Article  PubMed  CAS  Google Scholar 

  164. Tiras MB, Noyan V, Yildiz A, et al. Effects of alendronate and hormone replacement therapy, alone or in combination, on bone mass in postmenopausal women with osteoporosis: a prospective, randomized study. Hum Reprod 2000; 15: 2087–92

    Article  PubMed  CAS  Google Scholar 

  165. Greenspan SL, Emkey RD, Bone HG, et al. Significant differential effects of alendronate, estrogen, or combination therapy on the rate of bone loss after discontinuation of treatment of postmenopausal osteoporosis: a randomized, double-blind, placebo-controlled trial. Ann Intern Med 2002; 137: 875–83

    PubMed  CAS  Google Scholar 

  166. Harris ST, Eriksen EF, Davidson M, et al. Effect of combined risedronate and hormone replacement therapies on bone mineral density in postmenopausal women. J Clin Endocrinol Metab 2001; 86: 1890–7

    Article  PubMed  CAS  Google Scholar 

  167. Schnitzer T, Bone HG, Crepaldi G, et al. Therapeutic equivalence of alendronate 70mg once-weekly and alendronate 10mg daily in the treatment of osteoporosis: Alendronate Once-Weekly Study Group. Aging (Milano) 2000; 12: 1–12

    CAS  Google Scholar 

  168. Delaney MF, Hurwitz S, Shaw J, et al. Bone density changes with once weekly risedronate in postmenopausal women. J Clin Densitom 2003; 6(1): 45–50

    Article  PubMed  Google Scholar 

  169. Brown JP, Kendler DL, McClung MR, et al. The efficacy and tolerability of risedronate once a week for the treatment of postmenopausal osteoporosis. Calcif Tissue Int 2002 Aug; 71(2): 103–11

    Article  PubMed  CAS  Google Scholar 

  170. Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 2001; 344: 1434–41

    Article  PubMed  CAS  Google Scholar 

  171. Body JJ, Gaich GA, Scheele WH, et al. A randomized double-blind trial to compare the efficacy of teriparatide [recombinant human parathyroid hormone (1–34)] with alendronate in postmenopausal women with osteoporosis. J Clin Endocrinol Metab 2002; 87: 4528–35

    Article  PubMed  CAS  Google Scholar 

  172. Ravn P, Hosking D, Thompson D, et al. Monitoring of alendronate treatment and prediction of effect on bone mass by biochemical markers in the early postmenopausal intervention cohort study. J Clin Endocrinol Metab 1999; 84: 2363–8

    Article  PubMed  CAS  Google Scholar 

  173. Watts NB. Understanding the Bone Mass Measurement Act. J Clin Densitom 1999; 2: 211–7

    Article  PubMed  CAS  Google Scholar 

  174. Cummings SR, Palermo L, Browner W, et al. Monitoring osteoporosis therapy with bone densitometry: misleading changes and regression to the mean: Fracture Intervention Trial Research Group. JAMA 2000; 283: 1318–21

    Article  PubMed  CAS  Google Scholar 

  175. Hochberg MC, Ross PD, Black D, et al. Larger increases in bone mineral density during alendronate therapy are associated with a lower risk of new vertebral fractures in women with postmenopausal osteoporosis: Fracture Intervention Trial Research Group. Arthritis Rheum 1999; 42: 1246–54

    Article  PubMed  CAS  Google Scholar 

  176. Hochberg MC, Greenspan S, Wasnich RD, et al. Changes in bone density and turnover explain the reductions in incidence of nonvertebral fractures that occur during treatment with antiresorptive agents. J Clin Endocrinol Metab 2002; 87(4): 1586–92

    Article  PubMed  CAS  Google Scholar 

  177. Bone HG, Downs Jr RW, Tucci JR, et al. Dose-response relationships for alendronate treatment in osteoporotic elderly women: Alendronate Elderly Osteoporosis Study Centers. J Clin Endocrinol Metab 1997; 82: 265–74

    Article  PubMed  CAS  Google Scholar 

  178. Gonnelli S, Cepollaro C, Pondrelli C, et al. Bone turnover and the response to alendronate treatment in postmenopausal osteoporosis. Calcif Tissue Int 1999; 65: 359–64

    Article  PubMed  CAS  Google Scholar 

  179. Stepan JJ, Vokrouhlicka J. Comparison of biochemical markers of bone remodeling in the assessment of the effects of alendronate on bone in postmenopausal osteoporosis. Clin Chim Acta 1999; 288: 121–35

    Article  PubMed  CAS  Google Scholar 

  180. Ravn P, Clemmesen B, Christiansen C. Biochemical markers can predict the response in bone mass during alendronate treatment in early postmenopausal women: Alendronate Osteoporosis Prevention Study Group. Bone 1999; 24: 237–44

    Article  PubMed  CAS  Google Scholar 

  181. Greenspan SL, Rosen HN, Parker RA. Early changes in serum N-telopeptide and C-telopeptide cross-linked collagen type 1 predict long-term response to alendronate therapy in elderly women. J Clin Endocrinol Metab 2000; 85: 3537–40

    Article  PubMed  CAS  Google Scholar 

  182. Gonnelli S, Cepollaro C, Pondrelli C, et al. The usefulness of bone turnover in predicting the response to transdermal estrogen therapy in postmenopausal osteoporosis. J Bone Miner Res 1997; 12: 624–31

    Article  PubMed  CAS  Google Scholar 

  183. Bjarnason NH, Sarkar S, Duong T, et al. Six and twelve month changes in bone turnover are related to reduction in vertebral fracture risk during 3 years of raloxifene treatment in postmenopausal osteoporosis. Osteoporos Int 2001; 12: 922–30

    Article  PubMed  CAS  Google Scholar 

  184. Lauritzen JB, Petersen MM, Lund B. Effect of external hip protectors on hip fractures. Lancet 1993; 341(8836): 11–3

    Article  PubMed  CAS  Google Scholar 

  185. Kannus P, Parkkari J, Niemi S, et al. Prevention of hip fracture in elderly people with use of a hip protector. N Engl J Med 2000; 343: 1506–13

    Article  PubMed  CAS  Google Scholar 

  186. Rubenstein L. Hip protectors: a breakthrough in fracture prevention. N Engl J Med 2000; 343: 1562–3

    Article  PubMed  CAS  Google Scholar 

  187. Harada A, Mizuno M, Takemura M, et al. Hip fracture prevention trial using hip protectors in Japanese nursing homes. Osteoporos Int 2001; 12: 215–21

    Article  PubMed  CAS  Google Scholar 

  188. Parker MJ, Gillespie LD, Gillespie WJ. Hip protectors for preventing hip fractures in the elderly. Available in The Cochrane Library [database on disk and CD ROM]. Updated quarterly. The Cochrane Collaboration; issue 2. Oxford: Update Software, 2001: CD001255

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kleerekoper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahakala, A., Thoutreddy, S. & Kleerekoper, M. Prevention and Treatment of Postmenopausal Osteoporosis. Mol Diag Ther 2, 331–345 (2003). https://doi.org/10.2165/00024677-200302050-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00024677-200302050-00005

Keywords

Navigation