Skip to main content

Advertisement

Log in

Potential Interactions between Exercise and Drug Therapy

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Certain physiological changes caused by aerobic exercise can alter the pharmacokinetics of some drugs. A systematic review of the pharmacokinetic changes that can affect drugs as a result of aerobic exercise is provided. Eleven commonly used drugs are reviewed for their potential interaction with exercising patients. Serum concentrations of two β-blocking agents, atenolol and propranolol, and one antibiotic, doxycycline, have shown to increase as a result of exercise. No pharmacokinetic changes have been found in exercising patients taking Carvedilol or verapamil. Patients who exercise after taking digoxin experience a decreased digoxin serum concentration with an increased skeletal muscle concentration. The clearance of theophylline has been shown to decrease resulting in an increase in plasma half-life during exercise. The risk of hypoglycaemia may increase when patients with diabetes mellitus inject insulin into a muscle just prior to exercising that muscle. Increasing physical activity in patients taking warfarin has been shown to decrease the international normalised ratio. Much is still unknown regarding the interactions that exist between exercise and drug therapy. More studies need to be completed in this area before definite conclusions are made and clinical relevance can be established. Clinicians should be aware that the potential for such interactions exists, especially for drugs with a narrow therapeutic range and in patients who participate in extreme sporting activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III

Similar content being viewed by others

References

  1. Bauer LA. Individualization of drug therapy: clinical pharmacokinetics and pharmacodynamics. In: Dipiro JT, Talbert RL, Yee GC, et al., editors. Pharmacotherapy, a pathophysiologic approach. Stamford: Appleton & Lange, 1997: 29–48

    Google Scholar 

  2. Ciccone CD. Basic pharmacokinetics and potential effect of physical therapy interventions on pharmacokinetics variables. Phys Ther 1995; 75: 343–51

    PubMed  CAS  Google Scholar 

  3. Khazaeinia T, Ramsey AA. The effects of exercise on the pharmacokinetics of drugs. J Pharm Pharm Sci 2000; 3(3): 292–302

    PubMed  CAS  Google Scholar 

  4. Reents S. Sport and exercise pharmacology. Champaign (IL): Human Kinetics, 2000: 13–46

    Google Scholar 

  5. The top 200 prescriptions for 2001 by number of US prescriptions dispensed [online]. Available from URL: http://www.rxlist.com [Accessed 2003 Jul 17]

  6. McArdle WD, Katch FI, Katch VL. Exercise physiology. 3rd ed. Philadelphia (PA): Lea & Febiger, 1991: 17

    Google Scholar 

  7. Anderson KL. The cardiovascular system in exercise. In: Falls HB, editor. Exercise physiology. New York: Academic Press, 1968

    Google Scholar 

  8. American College of Sports Medicine. ACSM’s Guidelines for exercise testing and prescription. 6th ed. Baltimore (MD): Williams & Wilkins, 2000

    Google Scholar 

  9. DiPiro JT, Spruill WJ, Blouin RA, Pruemer JM. Concepts in clinical pharmacokinetics. 3rd ed. Bethesda (MD): American Society of Health Systems Pharmacists, 2002

    Google Scholar 

  10. Brouns F, Saris WHM, Rehrer NJ. Abdominal complaints and gastrointestinal function during long-lasting exercise. Int J Sports Med 1987; 8: 175–89

    Article  PubMed  CAS  Google Scholar 

  11. Cordain L, Latin RW, Behnke JJ. The effects of an anaerobic running program on bowel transit time. J Sports Med Phys Fitness 1986; 26(1): 101–4

    PubMed  CAS  Google Scholar 

  12. Fernqvist E, Linde B, Ostman J, et al. Effect of physical exercise on insulin absorption in insulin-dependent diabetics comparison between human and porcine insulin. Clin Physiol 1986; 6: 489–98

    Article  PubMed  CAS  Google Scholar 

  13. Koivisto VA, Felig P. Effects of leg exercise on insulin absorption in diabetic patients. N Engl J Med 1978; 298: 79–83

    Article  PubMed  CAS  Google Scholar 

  14. Klemsdal TO, Gjesdal K, Bredesen JE. Heating and cooling of nitroglycerin patch application area modify the plasma level of nitroglycerin. Eur J Clin Pharmacol 1992; 43: 625–8

    Article  PubMed  CAS  Google Scholar 

  15. Klingman AM. A biological brief on percutaneous absorption. Drug Dev Ind Pharm 1983; 9: 521–60

    Article  Google Scholar 

  16. van Baak MA. Influence of exercise on the pharmacokinetics of drugs. Clin Pharmacokinet 1990; 19(1): 32–43

    Article  PubMed  Google Scholar 

  17. Costill DL. Sweating: its composition and effects on body fluids. Ann N Y Acad Sci 1977; 301: 160–74

    Article  PubMed  CAS  Google Scholar 

  18. Schlaeffer F, Engelberg I, Kaplanski J, et al. Effect of exercise and environmental heat on theophylline kinetics. Respiration 1984; 45: 438–42

    Article  PubMed  CAS  Google Scholar 

  19. Swartz KD, Sidell FR. Effects of heat and exercise on the elimination of praldoxime in man. Clin Pharmacol Ther 1973; 14: 83–9

    PubMed  CAS  Google Scholar 

  20. Theilade P, Hansen JM, Skovsted L, et al. Effect of exercise on thyroid parameters and metabolic clearance rate of antipyrine in man. Acta Endocrinol (Copenh) 1979; 92: 271–6

    CAS  Google Scholar 

  21. Henery JA, Iliopoulou A, Kaye CM, et al. Changes in plasma concentrations of acebutolol, propranolol, and indomethocin during physical exercise. Life Sci 1981; 28: 1925

    Article  Google Scholar 

  22. Hurwitz GA, Webb JG, Walle T, et al. Exercise-induced increments in plasma levels of propranolol and noradrenaline. Br J Clin Pharmacol 1983; 16: 599–608

    Article  PubMed  CAS  Google Scholar 

  23. Powis G, Snow DH. The effects of exercise and adrenaline infusion upon the blood levels of propranolol and antipyrine in the horse. J Pharm Exp Ther 1978; 205: 725–31

    CAS  Google Scholar 

  24. Dossing M. Effect of acute and chronic exercise on hepatic drug metabolism. Clin Pharmacokinet 1985; 10: 426–31

    Article  PubMed  CAS  Google Scholar 

  25. Joreteg T, Jorestrand T. Physical exercise and binding of digoxin to skeletal muscle: effect of muscle activation frequency. Eur J Clin Pharmacol 1984; 27: 567–70

    Article  PubMed  CAS  Google Scholar 

  26. Villa JG, Bayon JE, Gonzalez-Gallego J. Changes in metabolism and urinary excretion of antipyrine induced by aerobic conditioning. J Sports Med Phys Fitness 1999; 39: 197–201

    PubMed  CAS  Google Scholar 

  27. Sweeney GD. Drags: some basic concepts. Med Sci Sports Exerc 1981; 13: 247–51

    Article  PubMed  CAS  Google Scholar 

  28. Suzuki M, Sudah M, Matsubaru S, et al. Changes in renal blood flow measured by radionuclide angiography following exhausting exercise in humans. Eur J Appl Physiol 1996; 74: 1–7

    Article  CAS  Google Scholar 

  29. Stoschitzky K, Linder W, Klein W. Stereoselective release of Satenolol from adrenergic nerve endings at exercise. Lancet 1992; 340: 696–7

    Article  PubMed  CAS  Google Scholar 

  30. Ylitalo P, Hinkka M. Effects of exercise on plasma levels and urinary excretion of sulfadimidine and procainamide. Int J Clin Pharmacol Ther Toxicol 1985; 23: 548–53

    PubMed  CAS  Google Scholar 

  31. McEvoy GK, editor. American Hospital Formulary Service Drug Information 2001. Bethesda (MD): American Society of Health-System Pharmacists, 2001

    Google Scholar 

  32. Mason WD, Kopchak G, Winer N, et al. Effect of exercise on the renal clearance of atenolol. J Pharm Sci 1980; 69: 344–5

    Article  PubMed  CAS  Google Scholar 

  33. Bruce RA. Exercise testing of patients with coronary artery disease [abstract]. Ann Clin Res 1971; 3: 323

    PubMed  CAS  Google Scholar 

  34. Van Baak MA, Mooij JM, Schiffers PM. Exercise and the pharmacokinetics of propranolol, verapamil and atenolol. Eur J Clin Pharmacol 1992; 43: 547–50

    Article  PubMed  Google Scholar 

  35. GlaxoSmithKline. Coreg® (carvedilol) package insert. Research Triangle Park (NC): GlaxoSmithKline, 2001

    Google Scholar 

  36. Stoschitzky K, Koshucharova G, Zweiker R, et al. Unpredicted lack of effect of exercise on plasma concentrations of Carvedilol. J Cardiovasc Pharmacol 2002; 39: 58–60

    Article  PubMed  CAS  Google Scholar 

  37. Arends BG, Bohm ROB, van Kemenade JE, et al. Influence of physical exercise on the pharmacokinetics of propranolol. Eur J Clin Pharmacol 1986, 377

    Google Scholar 

  38. Panton LB, Guillen GJ, Williams L, et al. The lack of effect of aerobic exercise training on propranolol pharmacokinetics in young and elderly adults. J Clin Pharmacol 1995; 35: 885–94

    PubMed  CAS  Google Scholar 

  39. Mooy J, Arends B, Kemenade JV, et al. Influence of prolonged submaximal exercise on the pharmacokinetics of verapamil in humans. J Cardiovasc Pharmacol 1986; 8: 940–2

    Article  PubMed  CAS  Google Scholar 

  40. Ylitalo P, Hinkaa H, Neuvonen PJ. Effect of exercise on the serum level of urinary excretion of tetracycline, doxycycline and sulphamethizole. Eur J Clin Pharmacol 1977; 12: 367–73

    Article  PubMed  CAS  Google Scholar 

  41. Jogestrand T, Anderson K. Effect of physical exercise on the pharmacokinetics of digoxin during maintenance treatment. J Cardiovasc Pharmacol 1989; 14: 73–6

    Article  PubMed  CAS  Google Scholar 

  42. Pederson KE, Madsen J, Kjaer K, et al. Effects of physical activity and immobilization on plasma digoxin concentration and renal digoxin clearance. Clin Pharmacol Ther 1983; 34: 303–8

    Article  Google Scholar 

  43. Grille W, Welter U, Johnson K, et al. Effects of physical activity on serum concentrations of digoxin and digitoxin. Eur J Clin Pharmacol 1996; 50: 237–9

    Article  PubMed  CAS  Google Scholar 

  44. Laursen SO, Pedersen KE, Klitgaard NA. Influence of physical activity on plasma digoxin in hospitalized patients. Dan Med Bull 1987; 34: 115–7

    PubMed  CAS  Google Scholar 

  45. Jessup JV, Lowenthal DT, Pollock ML, et al. The effects of exercise training on the pharmacokinetics of digoxin. J Cardiopulm Rehabil 2000; 20: 89–95

    Article  PubMed  CAS  Google Scholar 

  46. Micromedex® healthcare series. Greenwood Village (CO): Thomson MICROMEDEX, edition 110 expires 2001 Dec

  47. Shibata Y, Hashimoto H, Kurata C, et al. Influence of physical activity on warfarin therapy. Thromb Haemost 1998; 80: 203–4

    PubMed  CAS  Google Scholar 

  48. Ryan AJ, Chang RT, Gisolfi CV. Gastrointestinal permeability following aspirin intake and prolonged exercise. Med Sci Sports Exerc 1996; 28(6): 698–705

    Article  PubMed  CAS  Google Scholar 

  49. Sawrymowicz M. The effect of exercise on the pharmacokinetics of acetaminophen and acetylsalicylic acid. Ann Acad Med Stetin 1997; 43: 57–66

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

There were no sources of funding or conflicts of interest from any author directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas L. Lenz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenz, T.L., Lenz, N.J. & Faulkner, M.A. Potential Interactions between Exercise and Drug Therapy. Sports Med 34, 293–306 (2004). https://doi.org/10.2165/00007256-200434050-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200434050-00002

Keywords

Navigation