Skip to main content
Log in

Strength Training in the Elderly

Effects on Risk Factors for Age-Related Diseases

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Strength training (ST) is considered a promising intervention for reversing the loss of muscle function and the deterioration of muscle structure that is associated with advanced age. This reversal is thought to result in improvements in functional abilities and health status in the elderly by increasing muscle mass, strength and power and by increasing bone mineral density (BMD). In the past couple of decades, many studies have examined the effects of ST on risk factors for age-related diseases or disabilities. Collectively, these studies indicate that ST in the elderly: (i) is an effective intervention against sarcopenia because it produces substantial increases in the strength, mass, power and quality of skeletal muscle; (ii) can increase endurance performance; (iii) normalises blood pressure in those with high normal values; (iv) reduces insulin resistance; (v) decreases both total and intra-abdominal fat; (vi) increases resting metabolic rate in older men; (vii) prevents the loss of BMD with age; (viii) reduces risk factors for falls; and (ix) may reduce pain and improve function in those with osteoarthritis in the knee region. However, contrary to popular belief, ST does not increase maximal oxygen uptake beyond normal variations, improve lipoprotein or lipid profiles, or improve flexibility in the elderly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I

Similar content being viewed by others

References

  1. Larsson L, Grimby G, Karlsson J. Muscle strength and speed of movement in relation to age and muscle morphology. J Appl Physiol 1979; 46: 451–6

    PubMed  CAS  Google Scholar 

  2. Lindle R, Metter E, Lynch N, et al. Age and gender comparisons of muscle strength in 654 women andmen aged 20–93. J Appl Physiol 1997; 83: 1581–7

    PubMed  CAS  Google Scholar 

  3. Lynch NA, Metter EJ, Lindle RS, et al. Muscle quality I: age-associated differences in arm vs leg muscle groups. J Appl Physiol 1999; 86 (1): 188–94

    Google Scholar 

  4. Butler R. Did you say ’sarcopenia’? Geriatrics 1993; 48: 11–2

    Google Scholar 

  5. Young A, Skelton D. Applied physiology of strength and power in old age. Int J Sports Med 1994; 15: 149–51

    Article  PubMed  CAS  Google Scholar 

  6. Buchner D, Wagner E. Preventing frail health. Clin Geriatr Med 1992; 8: 1–17

    PubMed  CAS  Google Scholar 

  7. Rantanen T, Guralnik JM, Ferrucci L, et al. Coimpairments: strength and balance as predictors of severe walking disability. J Gerontol A Biol Sci Med Sci 1999; 54A: M172–6

    Article  Google Scholar 

  8. Rantanen T, Guralnik JM, Foley D, et al. Midlife hand grip strength as a predictor of old age disability. JAMA 1999; 281: 558–60

    Article  PubMed  CAS  Google Scholar 

  9. Rantanen T, Guralnik JM, Sakari-Rantala R, et al. Disability, physical activity, and muscle strength in older women: The women’s health and aging study. Arch Phys Med Rehab 1999; 80: 130–5

    Article  CAS  Google Scholar 

  10. Campbell A, Borrie M, Spears G. Risk factors for falls in a community-based prospective study of people 70 years and older. J Gerontol 1989; 44: M112–7

    PubMed  CAS  Google Scholar 

  11. Aniansson A, Zetterberg C, Hadberg M, et al. Impaired muscle function with aging: a background factor in the incidence of fractures of the proximal end of the femur. Clin Orthop Relat Res 1984; 191: 193–200

    PubMed  Google Scholar 

  12. Sinaki M, McPhee M, Hodgson S, et al. Relationship between bone mineral density of spine and strength of back extensors in healthy postmenopausal women. Mayo Clin Proc 1986; 61: 116–22

    Article  PubMed  CAS  Google Scholar 

  13. Bloesch D, Schultz Y, Breitenstein E, et al. Thermogenic response to an oral glucose load in man: comparison between young and elderly subjects. J Am Coll Nutr 1988; 7: 471–83

    PubMed  CAS  Google Scholar 

  14. Bassey E, Fiatarone M, O’Neil E, et al. Leg extensor power and functional performance in very old men and women. Clin Sci 1992; 82: 321–7

    PubMed  CAS  Google Scholar 

  15. Hyatt R, Whitelaw M, Bhat A, et al. Association of muscle strength with functional status of elderly people. Age Ageing 1990; 19: 330–6

    Article  PubMed  CAS  Google Scholar 

  16. Buchner D, de Lateur BJ. The importance of skeletal muscle strength to physical function in older adults. Ann Behav Med 1991; 13: 91–8

    Google Scholar 

  17. Thompson R, Crist D, Marsh M, et al. Effects of physical exercise for elderly patients with physical impairments. J Am Geriatr Soc 1988; 36: 130–5

    PubMed  CAS  Google Scholar 

  18. Klitgaard H, Mantoni M, Schiaffino S, et al. Function, morphology and protein expression of ageing skeletal muscle: a cross-sectional study of elderly men with different training backgrounds. Acta Physiol Scand 1990; 140: 41–54

    Article  PubMed  CAS  Google Scholar 

  19. Pendergast D, Fisher N, Calkins E. Cardiovascular, neuromuscular and metabolic alterations with age leading to frailty. J Gerontol 1993; 48: 61–7

    Article  PubMed  Google Scholar 

  20. Bortz W. Disuse and aging. JAMA 1982; 248: 1203–8

    Article  PubMed  Google Scholar 

  21. Moritani T, deVries H. Potential for gross muscle hypertrophy in older men. J Gerontol 1980; 35: 672–82

    Article  PubMed  CAS  Google Scholar 

  22. Fiatarone M, O’Neill E, Ryan N, et al. Exercise training and nutritional supplementation for physical frailty in very elderly people. N Engl J Med 1994; 330: 1769–75

    Article  PubMed  CAS  Google Scholar 

  23. Brown A, McCartney N, Sale D. Positive adaptation to weightlifting in the elderly. J Appl Physiol 1990; 69: 1725–33

    PubMed  CAS  Google Scholar 

  24. Charette S, McEvoy L, Pyka G, et al. Muscle hypertrophy response to resistance training in older women. J Appl Physiol 1991; 70: 1912–6

    PubMed  CAS  Google Scholar 

  25. Fiatarone M, Marks E, Ryan N, et al. High-intensity strength training in nonagenarians. JAMA 1990; 263: 3029–34

    Article  PubMed  CAS  Google Scholar 

  26. Frontera W, Meredith C, O’Reilly K, et al. Strength condition in older men: skeletal muscle hypertrophy and improved function. J Appl Physiol 1988; 63: 1038–44

    Google Scholar 

  27. Grimby G, Aniansson A, Hedberg M, et al. Training can improve muscle strength and endurance in 78- to 84-yr-old men. J Appl Physiol 1992; 73: 2517–23

    PubMed  CAS  Google Scholar 

  28. Roman W, Fleckenstein J, Stray-Gundersen J, et al. Adaptations in the elbow flexors of elderly males after heavy-resistance training. J Appl Physiol 1993; 74: 750–4

    PubMed  CAS  Google Scholar 

  29. Staron R, Karapondo D, Kraemer W, et al. Skeletal muscle adaptations during early phase of heavy-resistance training in men and women. J Appl Physiol 1994; 76: 1247–55

    PubMed  CAS  Google Scholar 

  30. Hurley B, Redmond R, Pratley R, Trueth M, Rogers M, Goldberg A. Effects of strength training on muscle hypertrophy and muscle cell disruption in older men. Int J Sports Med 1995; 16: 380–6

    Article  Google Scholar 

  31. Treuth M, Ryan A, Pratley R, et al. Effects of strength training on total and regional body composition in older men. J Appl Physiol 1994; 77: 614–20

    PubMed  CAS  Google Scholar 

  32. Singh MA, Ding W, Manfredi TJ, et al. Insulin-like growth factor I in skeletal muscle after weight-lifting exercise in frail elders. American Journal of Physiology 1999; 277 (1 Pt 1): E135–43

    PubMed  CAS  Google Scholar 

  33. Metter EJ, Conwit R, Tobin J, et al. Age-associated loss of power and strength in the upper extremities in women and men. J Gerontol A Biol Sci Med Sci 1997; 52: B267–76

    Article  PubMed  CAS  Google Scholar 

  34. Lemmer JT, Hurlbut DE, Martel GF, et al. Age and gender responses to strength training and detraining. Med Sci Sports Exerc 2000; 32: 1505–12

    Article  PubMed  CAS  Google Scholar 

  35. Tracy BL, Ivey FM, Hurlbut D, et al. Muscle quality II: effects of strength training in 65-75 year old men and women. J Appl Physiol 1999; 86 (1): 195–201

    PubMed  CAS  Google Scholar 

  36. Leong B, Kamen G, Pattern C, et al. Maximal motor discharge rates in the quadriceps muscles of older weight lifters. Med Sci Sports Exerc 1999; 31: 1638–44

    Article  PubMed  CAS  Google Scholar 

  37. Patten C, Kamen G. Adaptations in human motor unit discharge behavior to strength training [abstract]. Soc Neurosci 1996; 22: 130

    Google Scholar 

  38. Enoka RM. Neural adaptations with chronic physical activity. J Biomech 1997; 30: 447–55

    Article  PubMed  CAS  Google Scholar 

  39. Keen DA, Yue GH, Enoka RM. Training-related enhancement in the control of motor output in elderly humans. J Appl Physiol 1994; 77: 2648–58

    PubMed  CAS  Google Scholar 

  40. Laidlaw DH, Kornatz KW, et al. Strength training improves the steadiness of slow lengthening contractions performed by old adults. J Appl Physiol 1999; 87: 1786–95

    PubMed  CAS  Google Scholar 

  41. Chen Y, Bornfeldt KE, Arner A, et al. Increase in insulin-like growth factor I in hypertrophying smooth muscle. Am J Physiol 1994; 266: 224–9

    Google Scholar 

  42. Craig B, Brown R, Everhart J. Effects of progressive resistance training on growth hormone and testosterone levels in young and elderly subjects. Mech Ageing Dev 1989; 49: 159–69

    Article  PubMed  CAS  Google Scholar 

  43. Kraemer W, Marchitelli L, Gordon S, et al. Hormonal and growth factor responses to heavy resistance exercise protocols. J Appl Physiol 1990; 69: 1442–50

    PubMed  CAS  Google Scholar 

  44. Kraemer W, Fleck S, Dziados J, et al. Changes in hormonal concentrations after different heavy-resistance exercise protocols in women. J Appl Physiol 1993; 75: 594–604

    PubMed  CAS  Google Scholar 

  45. Taaffe DR, Jin IH, Vu TH, et al. Lack of effect of recombinant human growth hormone (GH) on muscle morphology and GH-insulin-like growth factor expression in resistance-trained elderly men. J Clin Endocrinol Metab 1996; 81: 421–5

    Article  PubMed  CAS  Google Scholar 

  46. Yarasheski KE, Campbell JA, Smith K, et al. Effect of growth hormone and resistance exercise on muscle growth in young men. Am J Physiol 1992; 262 (3 Pt 1): E261–7

    Google Scholar 

  47. Adams GR, McCue SA. Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats. J Appl Physiol 1998; 84: 1716–22

    PubMed  CAS  Google Scholar 

  48. Czerwinski S, Martin J, Bechtel PJ. Modulation of IGF mRNA abundance during stretch-induced skeletal muscle hypertrophy and regression. J Appl Physiol 1994; 76: 2026–30

    PubMed  CAS  Google Scholar 

  49. Yang S, Alnaqeeb M, Simpson H, et al. Changes in muscle fibre type, muscle mass and IGF-I gene expression in rabbit skeletal muscle subjected to stretch. J Anat 1997; 190: 613–22

    Article  PubMed  Google Scholar 

  50. Coleman ME, DeMayo F, Yin KC. Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J Biol Chem 1995; 270: 12109–16

    Article  PubMed  CAS  Google Scholar 

  51. Musaro A, McCullagh KJA, Naya FJ, et al. IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Nature 1999; 400: 581–5

    Article  PubMed  CAS  Google Scholar 

  52. Napier JR, Thomas MF, Sharma M, et al. Insulin-like growth factor-1 protects myoblasts from apoptosis but requires other factors to stimulate proliferation. J Endocrinol 1999; 163: 63–8

    Article  PubMed  CAS  Google Scholar 

  53. Semsarian C, Wu MJ, Ju YK. Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signalling pathway. Nature 1999; 400: 576–81

    Article  PubMed  CAS  Google Scholar 

  54. Grindland RE, Roy RR, Edgerton VR. Interactive effects of growth hormone and exercise on muscle mass in suspended rats. Am J Physiol 1994; 267: R316–22

    Google Scholar 

  55. Larsson L. Physical training effects on muscle morphology in sedentary males at different ages. Med Sci Sports Exerc 1982; 14: 203–6

    PubMed  CAS  Google Scholar 

  56. Pyka G, Lindenberger E, Charette SL, et al. Muscle strength and fiber adaptations to a year-long resistance training program in elderly men and women. J Gerontol 1994; 49: M22–7

    Article  PubMed  CAS  Google Scholar 

  57. Martel GF, Roth SM, Ivey FM, et al. Effects of strength training on muscle fiber characteristics in young and older men and women [abstract]. Med Sci Sports Exerc 1999; 31: S325

    Google Scholar 

  58. Hakkinen K, Newton RU, Gordon SE. Changes in muscle morphology, electromyographic activity, and force production characteristics during progressive strength training in young and oldermen. J Gerontol A Biol Sci Med Sci 1998; 53 (6): B415–23

    Article  Google Scholar 

  59. Darr KC, Schultz E. Exercise-induced satellite cell activation in growing and mature skeletal muscle. J Appl Physiol 1987; 63: 1816–21

    PubMed  CAS  Google Scholar 

  60. Snow MH. Satellite cell response in rat soleus muscle undergoing hypertrophy due to surgical ablation of synergists. Anatomical Record 1990; 227: 437–46

    Article  PubMed  CAS  Google Scholar 

  61. Jacobs SM, Wokke JJ, Bar PR, et al. Satellite cell activation after muscle damage in young and adult rats. Anat Rec 1995; 242: 329–36

    Article  PubMed  CAS  Google Scholar 

  62. McCormick KM, Thomas DP. Exercise-induced satellite cell activation in senescent soleus muscle. J Appl Physiol 1992; 72: 888–93

    Article  PubMed  CAS  Google Scholar 

  63. Phelan JN, Gonyea WJ. Effect of radiation on satellite cell activity and protein expression in overloaded mammalian skeletal muscle. Anat Rec 1997; 247: 179–88

    Article  PubMed  CAS  Google Scholar 

  64. Rosenblatt JD, Yong D, Parry DJ. Satellite cell activity is required for hypertrophy of overloaded adult rat muscle. Muscle Nerve 1994; 17: 608–13

    Article  PubMed  CAS  Google Scholar 

  65. Roth SM, Ferrell RE, Hurley BF. Strength training for the prevention and treatment of sarcopenia. J Nutr Health Aging 2000. In press

    Google Scholar 

  66. Greig C, Botella J, Young A. The quadriceps strength of healthy elderly people remeasured after eight years. Muscle Nerve 1993; 16: 6–10

    Article  PubMed  CAS  Google Scholar 

  67. Blair S, Kohl H, Paffenbarger R, et al. Physical fitness and all-cause mortality: a prospective study of healthy men and women. JAMA 1989; 262: 2395–401

    Article  PubMed  CAS  Google Scholar 

  68. Powell K, Thompson P, Caspersen C, et al. Physical activity and the incidence of coronary heart disease. Ann Rev Public Health 1987; 8: 253–87

    Article  CAS  Google Scholar 

  69. Heath G, Hagberg J, Ehsani A, et al. A physiological comparison of young and older endurance athletes. J Appl Physiol 1981; 51: 634–40

    PubMed  CAS  Google Scholar 

  70. Frontera W, Meredith CN, O’Reilly K, et al. Strength training and determinants of V̇O2max in older men. J Appl Physiol 1990; 68: 329–33

    PubMed  CAS  Google Scholar 

  71. Hurley B, Hagberg J, Goldberg A, et al. Resistive training can reduce coronary risk factors without altering V̇O2max or percent body fat. Med Sci Sports Exerc 1988; 20: 150–4

    Article  PubMed  CAS  Google Scholar 

  72. Hurley B, Seals D, Ehsani A, et al. Effects of high intensity strength training on cardiovascular function. Med Sci Sports Exerc 1984; 16: 483–8

    Article  PubMed  CAS  Google Scholar 

  73. Hickson R, Rosenkoetter M, Brown M. Strength training effects on aerobic power and short-term endurance. Med Sci Sports Exerc 1980; 12: 336–9

    PubMed  CAS  Google Scholar 

  74. Marcinik E, Potts J, Schlabach G, et al. Effects of strength training on lactate threshold and endurance performance. Med Sci Sports Exerc 1991; 23: 739–43

    PubMed  CAS  Google Scholar 

  75. Hagerman F, Walsh S, Staron R, et al. Effects of high-intensity resistance training on untrained older men. I. Strength, cardiovascular, and metabolic responses. J Gerontol A Biol Sci Med Sci 2000; 55 (7); B336–46

    CAS  Google Scholar 

  76. Ades P, Ballor D, Ashikaga T, et al. Weight training improves walking endurance in healthy elderly persons. Ann Intern Med 1996; 124: 568–72

    PubMed  CAS  Google Scholar 

  77. Parker N, Hunter G, Treuth M. Effects of strength training on cardiovascular responses during a submaximal walk an a weight-loaded walking test in older females. J Card Rehab 1996; 16: 56–62

    Article  CAS  Google Scholar 

  78. McCartney N, McKelvie R, Martin J, et al. Weight-training-induced attenuation of the circulatory response of older males to weight lifting. J Appl Physiol 1993; 74: 1056–60

    PubMed  CAS  Google Scholar 

  79. Wilson P, Anderson K, Harris T, et al. Determinants of change in total cholesterol and HDL-C with age: the Framingham study. J Gerontol 1994; 49 (6): M252–7

    Article  PubMed  CAS  Google Scholar 

  80. Satler L, Green C, Wallace R, et al. Coronary artery disease in the elderly. Am J Cardiol 1989; 63: 245–8

    Article  PubMed  CAS  Google Scholar 

  81. Krumholz H, Seeman T, Merrill S, et al. Lack of association between cholesterol and coronary heart disease mortality and morbidity and all-cause mortality in persons older than 70 years. JAMA 1994; 272: 1335–40

    Article  PubMed  CAS  Google Scholar 

  82. Frost P, Davis B, Burlando A, et al. Serum lipids and incidence of coronary heart disease. Circulation 1996; 94: 2381–8

    Article  PubMed  CAS  Google Scholar 

  83. Schaefer E, Moussa P, Wilson W, et al. Plasma lipoproteins in healthy octogenarians: lack of reduced high density lipoprotein cholesterol levels: results from the Framingham heart study. Metabolism 1989; 38 (4): 293–6

    Article  PubMed  CAS  Google Scholar 

  84. Kohl HI, Gordon N, Scott C, et al. Musculoskeletal strength and serum lipid levels in men and women. Med Sci Sports Exerc 1992; 24: 1080–7

    PubMed  Google Scholar 

  85. Tucker L, Silvester L. Strength training and hypercholesterolemia: an epidemiologic study of 8499 employed men. Am J Health Promot 1996; 11: 35–41

    Article  PubMed  CAS  Google Scholar 

  86. Boyden T, Pamenter R, Going S, et al. Resistance exercise training is associated with decreases in serumlow-density lipoprotein cholesterol levels in premenopausal women. Arch Intern Med 1993; 153: 97–100

    Article  PubMed  CAS  Google Scholar 

  87. Fripp R, Hodgson J. Effect of resistive training on plasma lipid and lipoprotein levels in male adolescents. J Paediatr 1987; 11: 926–31

    Article  Google Scholar 

  88. Johnson C, Stone M, Lopez-S A, et al. Diet and exercise in middle-aged men. J Am Diet Assoc 1982; 81: 695–701

    PubMed  CAS  Google Scholar 

  89. Blumenthal J, Matthews K, Fredrikson M, et al. Effects of exercise training on cardiovascular function and plasma lipid, lipoprotein, and apolipoprotein concentrations in premenopausal and postmenopausal women. Arterioscler Thromb 1991; 11: 912–7

    Article  PubMed  CAS  Google Scholar 

  90. Kokkinos P, Hurley B, Smutok M, et al. Strength training does not improve lipoprotein-lipid profiles inmen at risk for CHD. Med Sci Sports Exerc 1991; 123: 1134–9

    Google Scholar 

  91. Manning J, Dooly-Manning C, White K, et al. Effects of a resistance training program on lipoprotein-lipid levels in obese women. Med Sci Sports Exerc 1991; 23: 1222–6

    PubMed  CAS  Google Scholar 

  92. Rhea P, Ryan A, Nicklas B, et al. Effects of strength training with and without weight loss on lipoprotein-lipid levels in postmenopausal women. Clin Exerc Physiol 1999; 1: 138–44

    Google Scholar 

  93. Smutok M, Reece C, Kokkinos P, et al. Aerobic vs strength training for risk factor intervention in middle-aged men at high risk for coronary heart disease. Metabolism 1993; 42: 177–84

    Article  PubMed  CAS  Google Scholar 

  94. Treuth M, Hunter G, Kekes-Szabo T, et al. Reduction in intra-abdominal adipose tissue after strength training in older women. J Appl Physiol 1995; 78 (4): 1425–31

    PubMed  CAS  Google Scholar 

  95. Hurley B. Effects of resistive training on lipoprotein-lipid profiles: a comparison to aerobic exercise training. Med Sci Sports Exerc 1989; 21: 689–93

    PubMed  CAS  Google Scholar 

  96. Kokkinos P, Hurley B. Strength training and lipoprotein-lipid profiles: a critical analysis and recommendations for further study. Sports Med 1990; 9: 266–72

    Article  PubMed  CAS  Google Scholar 

  97. Despres J. Visceral obesity, insulin resistance, and dyslipidemia: contribution of endurance exercise training to the treatment of the plurimetabolic syndrome. Exerc Sport Sci Rev 1997; 25: 271–300

    PubMed  CAS  Google Scholar 

  98. Hersey III W, Graves J, Pollock M, et al. Endurance exercise training improves body composition and plasma insulin responses in 70-to 79-year-old men and women. Metabolism 1994; 43: 847–54

    Article  PubMed  CAS  Google Scholar 

  99. Lee A, Craig B, Lucas J, et al. The effect of endurance training, weight training and a combination of endurance and weight training upon the blood lipid profile of young male subjects. J Appl Sports Sci Res 1990; 4: 68–75

    Google Scholar 

  100. Wosornu D, Bedford D, Ballantyne D. A comparison of the effects of strength and aerobic exercise training on exercise capacity and lipids after coronary artery bypass surgery. Eur Heart J 1996; 17: 854–63

    Article  PubMed  CAS  Google Scholar 

  101. Hagberg JM, Ferrell RE, Katzel LI, et al. Apolipoprotein E genotype and exercise training-induced increases in plasma high-density lipoprotein (HDL)- and HDL2-cholesterol levels in overweight men. Metabolism 2000; 48: 943–5

    Article  Google Scholar 

  102. Kaplan N. Clinical hypertension. 5th ed. Baltimore (MD): Williams and Wilkins, 1990

    Google Scholar 

  103. Stone M, Wilson G, Blessing D, et al. Cardiovascular responses to short-term Olympic style weight-training in young men. Can J Appl Sport Sci 1983; 8: 134–9

    PubMed  CAS  Google Scholar 

  104. Cononie CC, Graves JEPML. Effect of exercise training on blood pressure in 70-to 79-yr-old men and women. Med Sci Sports Exerc 1991; 23: 505–11

    PubMed  CAS  Google Scholar 

  105. Hagberg JM, Blair S, Ehsani AA. Position stand: Physical activity, physical fitness, and hypertension. Med Sci Sports Exerc 1993; 25: i–x

    Google Scholar 

  106. Martel GF, Hurlbut MS, Lott ME, et al. Strength training normalizes resting blood pressure in 65 to 73 year-old men and women with high normal blood pressure. J Am Geriatr Soc 1999; 47: 1215–21

    PubMed  CAS  Google Scholar 

  107. The sixth report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Arch Intern Med 1997 Nov; 157 (21): 2413–46

  108. Kannel WB. Blood pressure as a cardiovascular risk factor: prevention and treatment. JAMA 1996; 275: 1571–6

    Article  PubMed  CAS  Google Scholar 

  109. National High Blood Pressure Education Pressure Education Program. National High Blood Pressure Education Program Working Group Report on Primary Prevention of Hypertension. Bethesda (MD): US Department of Health and Human Services, National Heart Lung, and Blood Institute, 1993: NIH publication no.: 93-2669

    Google Scholar 

  110. Blumenthal J, Siegel W, Appelbaum M. Failure of exercise to reduce blood pressure in patients with mild hypertension. JAMA 1991; 266: 2098–101

    Article  PubMed  CAS  Google Scholar 

  111. Davidson M. The effect of aging on carbohydrate metabolism: a review of the English literature and a practical approach to the diagnosis of diabetes mellitus in the elderly. Metabolism 1979; 28: 687–705

    Google Scholar 

  112. DeFronzo RA. Glucose tolerance and aging: evidence for tissue insensitivity to insulin. Diabetes 1979; 28: 1095–101

    PubMed  CAS  Google Scholar 

  113. Hjermann I. The metabolic cardiovascular syndrome: syndrome X, Reaven’s syndrome, insulin resistance syndrome, atherothrombogenic syndrome. J Cardiovasc Pharmacol 1992; 20 Suppl. 8: S5–10

    PubMed  Google Scholar 

  114. Stout R. Overview of the association between insulin and atherosclerosis. Metabolism 1984; 34: 7–12

    Article  Google Scholar 

  115. Miller J, Pratley R, Goldberg A, et al. Strength training increases insulin action in healthy 50–65 year old men. J Appl Physiol 1994; 77: 1122–7

    PubMed  CAS  Google Scholar 

  116. Craig B, Everhart J, Brown R. The influence of high-resistance training on glucose tolerance in young and elderly subjects. Mech Ageing Dev 1989; 49: 147–57

    Article  PubMed  CAS  Google Scholar 

  117. Miller W, Sherman W, Ivy J. Effect of strength training on glucose tolerance and post-glucose insulin response. Med Sci Sports Exerc 1984; 16: 539–43

    PubMed  CAS  Google Scholar 

  118. Durak E, Jovanovis-Petersol L, Peterson C. Randomized cross-over study of effect of resistance training on glycemic control, muscular strength, and cholesterol in type I diabetic men. Diabetes Care 1990; 13: 1039–42

    Article  PubMed  CAS  Google Scholar 

  119. Eriksson J, Taimela S, Eriksson K, et al. Resistance training in the treatment of non-insulin-dependent diabetes mellitus. Int J Sports Med 1997; 18: 242–6

    Article  PubMed  CAS  Google Scholar 

  120. Jovanovic-Peterson L, Durak EP, Peterson CM. A twelve session exercise program and its effects on physical conditioning and glucose metabolism in type I diabetes mellitus [abstract]. Int J Sports Med 1989; 10: 377

    Google Scholar 

  121. Peterson CM, Jones RL, DuPuis A, et al. Feasibility of improved blood glucose control in patients with insulin-dependent diabetes mellitus. Diabetes Care 1979; 2: 329–35

    Article  PubMed  CAS  Google Scholar 

  122. Smutok MA, Reece C, Kokkinos PF, et al. Effects of exercise training modality on glucose tolerance in men with abnormal glucose regulation. Int J Sports Med 1994; 15 (6): 283–9

    Article  PubMed  CAS  Google Scholar 

  123. Eriksson J, Tuominen T, Valle S, et al. Aerobic endurance exercise or circuit-type resistance training for individuals with impaired glucose tolerance? Horm Metab Res 1998; 30: 37–41

    Article  PubMed  CAS  Google Scholar 

  124. Ishii T, Yamakita T, Sato T, et al. Resistance training improves insulin sensitivity in MIDDM subjects without altering maximal oxygen uptake. Diabetes Care 1998; 21: 1353–5

    Article  PubMed  CAS  Google Scholar 

  125. Ryan A, Pratley R, Goldberg A, et al. Resistive training increases insulin action in postmenopausal women. J Gerontol A Biol Sci Med Sci 1996; 51 (5): M199–205

    Article  PubMed  CAS  Google Scholar 

  126. Barret-Conner E, Wingard D, Criqui M, et al. Is border-line fasting hyperglycemia a risk factor for cardiovascular death? J Chronic Dis 1984; 37: 773–9

    Article  Google Scholar 

  127. Despres J, Lamarche B, Mauriege P, et al. Hyperinsulinemia as an independent risk factor for ischemic heart disease. N Engl J Med 1996; 334: 952–7

    Article  PubMed  CAS  Google Scholar 

  128. Pollare T, Lithell H, Berne C. Insulin resistance is a characteristic feature of primary hypertension independent of obesity. Metabolism 1990; 39: 167–74

    Article  PubMed  CAS  Google Scholar 

  129. Zavaroni I, Bonoro E, Pagliara M, et al. Risk factors for coronary artery disease in healthy persons with hyperinsulinemia and normal glucose tolerance. N Engl J Med 1989; 320: 702–6

    Article  PubMed  CAS  Google Scholar 

  130. Harris M, Hadden W, Knowler W, et al. Prevalence of diabetes and impaired glucose tolerance and plasma glucose levels in US. population aged 20–74 yr. Diabetes 1987; 36: 523–34

    CAS  Google Scholar 

  131. Muller D, Elahi D, Tobin J, et al. The effect of age on insulin resistance and secretion: a review. Semin Nephrol 1996; 16: 289–98

    PubMed  CAS  Google Scholar 

  132. Rowe J, Minaker K, Palotta J, et al. Characterization of the insulin resistance of aging. J Clin Invest 1983; 71: 1581–7

    Article  PubMed  CAS  Google Scholar 

  133. Shimokata H, Muller D, Fleg J, et al. Age as independent determinant of glucose tolerance. Diabetes 1991; 40: 44–51

    Article  PubMed  CAS  Google Scholar 

  134. Broughton D, Taylor R. Review: deterioration of glucose tolerance with age: the role of insulin resistance. Age Ageing 1991; 20: 221–5

    Article  PubMed  CAS  Google Scholar 

  135. Helmrich S, Ragland D, Leung R, et al. Physical activity and reduced occurrence of non-insulin-dependent diabetes mellitus. N Engl J Med 1991; 325: 147–52

    Article  PubMed  CAS  Google Scholar 

  136. Pacini G, Valerio A, Beccaro F, et al. Insulin sensitivity and beta-cell responsivity are not decreased in elderly subjects with normal OGTT. J Am Geriatr Soc 1988; 36: 317–23

    PubMed  CAS  Google Scholar 

  137. Seals D, Hagberg J, Allen W, et al. Glucose tolerance in young and older athletes and sedentary men. J Appl Physiol 1984; 56: 1521–5

    PubMed  CAS  Google Scholar 

  138. Hurley B, Hagberg J, Seals D, et al. Glucose tolerance and lipid-lipoprotein levels in middle-aged powerlifters. Clin Physiol 1987; 7: 11–9

    Article  PubMed  CAS  Google Scholar 

  139. Seals D, Hagberg J, Hurley B, et al. Effects of endurance training on glucose tolerance and plasma lipid levels in older men and women. JAMA 1984; 252: 645–9

    Article  PubMed  CAS  Google Scholar 

  140. National Institute of Health. Consensus development conference on diet and exercise in non-insulin-dependent diabetes mellitus. Diabetes Care 1987; 10: 639–44

    Google Scholar 

  141. Koivisto V, Yki-Jarvinen H, DeFronzo R. Physical training and insulin sensitivity. Diabetes Metab Rev 1986; 1: 445–81

    Article  PubMed  CAS  Google Scholar 

  142. Council on Exercise of the American Diabetes Association. Exercise and NIDDM. Diabetes Care 1990; 13: 785–9

    Google Scholar 

  143. Joseph LO, Farrell PA, Davey SL, et al. Effect of resistance training with or without chromium picolinate supplementation on glucose metabolism in older men and women. Metabolism 1999; 48: 546–53

    Article  PubMed  CAS  Google Scholar 

  144. Campbell W, Crim M, Young V, et al. Increased energy requirements and changes in body composition with resistance training in older adults. Am J Clin Nutr 1994; 60: 167–75

    PubMed  CAS  Google Scholar 

  145. Castro M, McCann D, Shaffrath J, et al. Peak torque per unit cross-sectional area differs between strength-trained and untrained young adults. Med Sci Sports Exerc 1995; 27 (3): 397–403

    PubMed  CAS  Google Scholar 

  146. Bell R, Hoshizaki T. Relationships of age and sex with joint range of motion of seventeen joint actions in humans. Can J Appl Sport Sci 1981; 6: 202–6

    PubMed  CAS  Google Scholar 

  147. Benestad A. Trainability of old men. Acta Med Scand 1965; 178: 321–7

    Article  PubMed  CAS  Google Scholar 

  148. Brock D, Guralnick J, Brody J. Handbook of the biology of aging. In: Schneider E, Rowe J, editors. Demography and epidemiology of aging in the US. San Diego: Academic Press, 1990: 3–23

    Google Scholar 

  149. Anderssen S, Hjermann I, Urdal P, et al. Improved carbohydrate metabolism after physical training and dietary intervention in individuals with the atherothrombogenic syndrome. Oslo diet and exercise study (ODES): a randomized trial. J Intern Med 1996; 240 (4): 203–9

    Article  PubMed  CAS  Google Scholar 

  150. Brown M, Hagberg J. Does exercise training play a role in the treatment of essential hypertension. J Cardiovasc Risk 1995; 2: 296–302

    Article  PubMed  Google Scholar 

  151. Bloomfield S, Williams N, Lamb D, et al. Nonweightbearing exercise increases lumbar bone mineral density in healthy postmenopausal women. Am J Phys Med Rehab 1993; 72: 204–9

    Article  CAS  Google Scholar 

  152. Lott ME, Hurlbut DE, Ryan AS, et al. Effects of strength training on glucose homeostasis in older men and women [abstract]. Med Sci Sports Exerc 1998; 30: S196

    Google Scholar 

  153. Zachwieja J, Toffolo G, Cobelli C, et al. Resistance exercise and growth hormone administration in older men: effects on insulin sensitivity and secretion during a stable-label intravenous glucose tolerance test. Metabolism 1996; 45: 254–60

    Article  PubMed  CAS  Google Scholar 

  154. Buemann B, Tremblay A. Effects of exercise training on abdominal obesity and related metabolic complications. Sports Med 1996; 3: 191–212

    Article  Google Scholar 

  155. Despres J. Abdominal obesity as important component of insulin-resistance syndrome. Nutrition 1993; 9: 452–9

    PubMed  CAS  Google Scholar 

  156. Cohn S, Vaswani A, Zanzid I, et al. Changes in body chemical composition with age measured by total-body neutron activation. Am J Physiol 1976; 25: 85–95

    CAS  Google Scholar 

  157. Donahue R, Abbort R, Bloom E, et al. Central obesity and coronary heart disease in men. Lancet 1987; I: 822–4

    Google Scholar 

  158. Ross R, Rissanen J. Mobilization of visceral and subcutaneous adipose tissue in response to energy restriction and exercise. Am J Clin Nutr 1994; 60: 695–703

    PubMed  CAS  Google Scholar 

  159. Ross R, Rissanen J, Pedwell H, et al. Influence of diet and exercise on skeletal muscle and visceral adipose tissue in men. J Appl Physiol 1996; 81: 2445–55

    PubMed  CAS  Google Scholar 

  160. Poehlman E, Goran M, Gardner A, et al. Determinants of decline in resting metabolic rate in aging females. Am J Physiol 1993; 264 (3 Pt 1): E450–5

    PubMed  CAS  Google Scholar 

  161. Tataranni P, Ravussin E. Variability in metabolic rate: biological sites of regulation. Int J Obes 1995; 19 Suppl. 4: S102–6

    Google Scholar 

  162. Poehlman E, Toth M, Webb G. Sodium-potassium pump activity contributes to the age-related decline in resting metabolic rate. J Clin Endocrinol Metab 1993; 76: 1054–7

    Article  PubMed  CAS  Google Scholar 

  163. Poehlman ET, Gardner AW, Ades PA, et al. Resting energy metabolism and cardiovascular disease risk in resistance-trained and aerobically trained males. Metabolism 1992; 41: 1351–60

    Article  PubMed  CAS  Google Scholar 

  164. Broeder C, Burrhus K, Svanenick L, et al. The effects of either high-intensity resistance or endurance training on resting metabolic rate. Am J Clin Nutr 1992; 55: 802–10

    PubMed  CAS  Google Scholar 

  165. Pratley R, Nicklas B, Rubin M, et al. Strength training increases resting metabolic rate and norepinephrine levels in healthy 50- to 65-yr-old men. J Appl Physiol 1994; 76: 133–7

    Article  PubMed  CAS  Google Scholar 

  166. Van Etten L, Westerterp K, Verstaooebm FT. Effect of weight-training on energy expenditure and substrate utilization during sleep. Med Sci Sports Exerc 1994; 27: 188–93

    Google Scholar 

  167. Van Etten L, Westertep K, Vestappen F, et al. Effect of an 18-wk weight-training program on energy expenditure and physical activity. J Appl Physiol 1997; 82: 298–304

    PubMed  Google Scholar 

  168. Cullinen K, Caldwell M. Weight training increases fat-free mass and strength in untrained young women. J Am Diet Assoc 1998; 98: 414–8

    Article  PubMed  CAS  Google Scholar 

  169. Ryan A, Pratley R, Elahi D, et al. Resistive training increases fat-free mass and maintains RMR despite weight loss in postmenopausal women. J Appl Physiol 1995; 79: 818–23

    PubMed  CAS  Google Scholar 

  170. Taaffe D, Pruitt L, Reim J, et al. Effect of sustained resistance training on basal metabolic rate in older women. J Am Geriatr Soc 1995; 43: 465–71

    PubMed  CAS  Google Scholar 

  171. Treuth M, Hunter G, Weinsier R, et al. Energy expenditure and substrate utilization in older women after strength training: 24-h calorimeter results. J Appl Physiol 1995; 78 (6): 2140–6

    PubMed  CAS  Google Scholar 

  172. Ballor DL, Harvey-Berino JR, Ades PA, et al. Contrasting effects of resistance and aerobic training on body composition and metabolism after diet-induced weight loss. Metabolism 1996; 45: 179–83

    Article  PubMed  CAS  Google Scholar 

  173. Rall LC, Meydani SN, Kehayias JJ, et al. The effect progressive resistance training in rheumatoid arthritis: increased strength with changes in energy balance or body composition. Arthritis Rheum 1996; 39 (3): 415–26

    Article  PubMed  CAS  Google Scholar 

  174. Bryner RW, Ullrich IH, Sauers J, et al. Effects of resistance vs aerobic training combined with an 800 calorie liquid diet on lean body mass and resting metabolic rate. J Am Col Nutr 1999; 18: 115–21

    CAS  Google Scholar 

  175. Nelson M, Fiatarone M, Morganti C, et al. Effects of high-intensity strength training on multiple risk factors for osteoporotic fractures: a randomized controlled trial. JAMA 1994; 272: 1909–14

    Article  PubMed  CAS  Google Scholar 

  176. Ross R, Pedwell H, Rissanen J. Effects of energy restriction and exercise on skeletal muscle and adipose tissue in women as measured by magnetic resonance imaging. Am J Clin Nutr 1995; 61: 1179–85

    PubMed  CAS  Google Scholar 

  177. Lemmer JT, Ivey FM, Ryan AS, et al. Effect of strength training on RMR and physical activity: age and gender comparisons. Med Sci Sports Exerc 2000. In press

    Google Scholar 

  178. Cummings S, Kelsey J, Nevitt M. Epidemiology of osteoporosis and osteoporotic fractures. Epidemiol Rev 1985; 7: 178–205

    PubMed  CAS  Google Scholar 

  179. Lindsay R. Osteoporosis. Chicago (IL): National Osteoporosis Foundation, 1992

    Google Scholar 

  180. Zimmermann CL, Smidt GL, Brooks JS, et al. Relationship of extremity muscle torque and bone mineral density in postmenopausal women. Phys Ther 1990; 70: 302–9

    PubMed  CAS  Google Scholar 

  181. Ryan AS, Treuth MS, Hunter GR, et al. Resistive training maintains bone mineral density in postmenopausal women. Calcif Tissue Int 1998; 62: 295–9

    Article  PubMed  CAS  Google Scholar 

  182. Calmels P, Vico L, Alexandre C, et al. Cross-sectional study of muscle strength and bone mineral density in a population of 106 women between the ages of 44 and 87 years: relationship with age and menopause. Eur J Appl Physiol 1995; 70: 180–6

    Article  CAS  Google Scholar 

  183. Hughes V, Frontera W, Dallal G, et al. Muscle strength and body composition: associations with bone density in older subjects. Med Sci Sports Exerc 1995; 27: 967–74

    Article  PubMed  CAS  Google Scholar 

  184. Aloia JF, Vaswani A, Flaster MaR, et al. To what extent is bone mass determined by fat-free or fat mass? Am J Clin Nutr 1995; 61: 1110–4

    PubMed  CAS  Google Scholar 

  185. Bevier W, Wiswell R, Pyka G, et al. Relationship of body composition, muscle strength, and aerobic capacity to bone mineral density in older men and women. J Bone Miner Res 1989; 4: 421–32

    Article  PubMed  CAS  Google Scholar 

  186. Haapasalo H, Kannus P, Sievanen H, et al. Long-term unilateral loading and bone mineral density and content in female squash players. Calcif Tissue Int 1994; 54: 249–55

    Article  PubMed  CAS  Google Scholar 

  187. Karlsson M, Vergnaud P, Delmas P, et al. Indicators of bone formation in weight lifters. Calcif Tissue Int 1995; 56: 177–80

    Article  PubMed  CAS  Google Scholar 

  188. Notelovitz M, Martin D, Probart C. Estrogen therapy and variable-resistance weight training increase bone mineral in surgically menopausal women. J Bone Miner Res 1991; 6: 583–90

    Article  PubMed  CAS  Google Scholar 

  189. Pruitt LA, Jackson RD, Bartels RL, et al. Weight training effects on bone mineral density in early postmenopausal women. J Bone Miner Res 1992; 7: 179–85

    Article  PubMed  CAS  Google Scholar 

  190. Menkes A, Mazel S, Redmond R, et al. Strength training increases regional bone mineral density and bone remodeling in middle-aged and older men. J Appl Physiol 1993; 74: 2478–84

    PubMed  CAS  Google Scholar 

  191. Ryan A, Treuth M, Rubin M, et al. Effects of strength training on bone mineral density: hormonal and bone turnover relationships. J Appl Physiol 1994; 77 (4): 1678–84

    PubMed  CAS  Google Scholar 

  192. Snow-Harter C, Bouxsein M, Lewis B, et al. Effects of resistance and endurance exercise on bone mineral status of young women. J Bone Miner Res 1992; 7: 761–9

    Article  PubMed  CAS  Google Scholar 

  193. Lohman T, Going S, Pamenter R, et al. Effects of resistance training on regional and total bone mineral density in premenopausal women: a randomized prospective study. J Bone Miner Res 1995; 10: 1015–24

    Article  PubMed  CAS  Google Scholar 

  194. Gleeson P, Protas E, LeBlanc A, et al. Effects of weight lifting on bone mineral density in premenopausal women. J Bone Miner Res 1990; 5: 153–8

    Article  PubMed  CAS  Google Scholar 

  195. Rockwell JC, Sorensen AM, Baker S, et al. Weight training decreases vertebral bone density in premenopausal women: a prospective study. J Clin Endocrinol Metab 1990; 71: 988–93

    Article  PubMed  CAS  Google Scholar 

  196. Yarasheski KE, Campbell JA, Kohrt WM. Effect of resistance exercise and growth hormone on bone density in older men. Clin Endocrinol 1997; 47: 223–9

    Article  CAS  Google Scholar 

  197. Courtney A, Wachtel E, Myers E, et al. Effects of loading rate on strength of the proximal femur. Calcif Tissue Int 1994; 55: 53–8

    Article  PubMed  CAS  Google Scholar 

  198. Davis MA, Ettinger WH, Neuhaus JM, et al. Knee osteoarthritis and physical functioning: evidence from the NHANES I epidemiologic follow-up study. J Rheumatol 1990; 18: 591–8

    Google Scholar 

  199. Gilliland B. Degenerative joint disease. In: Eugene B, Isselbacher K, Petersdorf R, et al., editors. Harrison’s principles of internal medicine. New York: McGraw Hill Book Company, 1987: 1456–8

    Google Scholar 

  200. Ekdahl C, Andersson S, Svensson B. Muscle function of the lower extremities in rheumatoid arthritis and osteoarthrosis: a descriptive study in patients in a primary health care district. J Clin Epidemiol 1989; 42: 947–54

    Article  PubMed  CAS  Google Scholar 

  201. O’Reilly S, Jones A, Doherty M. Muscle weakness in osteoarthritis. Curr Opin Rheumatol 1997; 9: 259-62

    Article  PubMed  Google Scholar 

  202. Fisher NM, Pendergast DR. Effects of a muscle exercise program on exercise capacity in subjects with osteoarthritis. Arch Phys Med Rehab 1994; 75: 792–7

    CAS  Google Scholar 

  203. Pothier B, Allen M. Kinesiology and the degenerative joint. Rheum Dis Clin North Am 1991; 16: 989–1002

    Google Scholar 

  204. Adler S. Self care in the management of the degenerative knee joint. Physiotherapy 1985; 71: 58–60

    Google Scholar 

  205. Chamberlain M, Care G, Harfield B. Physiotherapy in osteoarthritis of the knees: a controlled trial of hospital versus home exercises. Int Rehab Med 1982; 4: 101–6

    CAS  Google Scholar 

  206. Marks R. The effect of isometric quadriceps strength training in mid-range for osteoarthritis of the knee. Arthritis Care Res 1993; 6: 52–6

    Article  PubMed  CAS  Google Scholar 

  207. Quirk A, Newman R, Newman K. An evaluation of interterential therapy, shortwave diathermy and exercise in the treatment of osteo-arthritis of the knee. Physiotherapy 1985; 71: 55–7

    Google Scholar 

  208. Marks R. Quadriceps strength training for osteo-arthritis of the knee: A literature review and analysis. Physiotherapy 1993; 79: 13–8

    Article  Google Scholar 

  209. Schilke JM, Johnson GO, Housh TJ, et al. Effects of muscle-strength training on the functional status of patients with osteoarthritis of the knee joint. Nurs Res 1996; 45: 68–72

    Article  PubMed  CAS  Google Scholar 

  210. Ettinger WJ, Burns R, Messier S, et al. Arandomized trial comparing aerobic exercise and resistance exercise with a health education program in older adults with knee osteoarthritis. JAMA 1997; 277: 25–31

    Article  PubMed  Google Scholar 

  211. Rogind H, Bibow-Nielson B, Jensen B, et al. The effects of a physical training program on patients with osteoarthritis of the knees. Arch Phys Med Rehab 1998; 79: 1421–7

    Article  CAS  Google Scholar 

  212. Minor MA. Exercise in the treatment of osteoarthritis. Rheum Dis Clin North Am 1999; 25: 397–415

    Article  PubMed  CAS  Google Scholar 

  213. Bassey E, Morgan K, Dallosso H, et al. Flexibility of the shoulder joint measured as range of abduction in a large representative sample of men and women over 65 years of age. Eur J Appl Physiol 1989; 58: 353–60

    Article  CAS  Google Scholar 

  214. Germain N, Blaire S. Variability of shoulder flexion with age, activity and sex. Am Correct Ther J 1983; 37 (6): 156-60

    PubMed  CAS  Google Scholar 

  215. Bergstrom G, Aniansson A. Functional consequences of joint impairment at age 79. Scand J Rehab Med 1985; 17: 183–90

    CAS  Google Scholar 

  216. Gehlsen G, Whaley M. Falls in the elderly: part II, balance, strength, and flexibility. Arch Phys Med Rehab 1990; 71: 739–41

    CAS  Google Scholar 

  217. Chapman E, deVries H, Swezey R. Joint stiffness: effects of exercise on young and oldmen. J Gerontol 1972; 27 (2): 218–21

    Article  PubMed  CAS  Google Scholar 

  218. Voorhips L, Lemmunk K, Van Heuvellon M, et al. The physical condition of elderly women differing in habitual physical activity. Med Sci Sports Exerc 1993; 25: 1152–7

    Google Scholar 

  219. Kligman E, Pepin E. Prescribing physical activity for older patients. Geriatrics 1992; 47: 33–47

    PubMed  CAS  Google Scholar 

  220. Lombardi V. Beginning weight training. Dubuque: WC Brown Publishers, 1989

    Google Scholar 

  221. Stone M, Fleck S, Triplett N, et al. Health and performance related potential of resistance training. Sports Med 1991; 11: 210–31

    Article  PubMed  CAS  Google Scholar 

  222. Girouard C, Hurley B. Does strength training inhibit gains in range of motion from flexibility training in older adults? Med Sci Sports Exerc 1995; 27 (10): 1444–9

    PubMed  CAS  Google Scholar 

  223. Gardner G. Effect of isometric and isotonic exercise on joint motion. Arch Phys Med Rehab 1966; 47: 24–30

    CAS  Google Scholar 

  224. Weltman A, Janney C, Rians C, et al. The effects of hydraulic resistance strength training in pre-pubertal males. Med Sci Sports Exerc 1986; 18: 629–38

    PubMed  CAS  Google Scholar 

  225. Massey B, Chauder N. Effects of systematic, heavy resistive exercise on range of joint movement in young male adults. Res Q 1956; 27: 41–51

    Google Scholar 

  226. Marcinik E, Hodgdon J, Mittleman K, et al. Aerobic/calisthenic and aerobic/circuit weight training programs for Navy men: a comparative study. Med Sci Sports Exerc 1985; 17: 482–7

    Article  PubMed  CAS  Google Scholar 

  227. Morey M, Cowper P, Fuessner J, et al. Evaluation of a supervised exercise program in a geriatric population. J Am Geriatr Soc 1989; 37: 348–54

    PubMed  CAS  Google Scholar 

  228. Raab D, Agre J, McAdam M, et al. Light resistance and stretching exercise in elderly women: effect upon flexibility. Arch Phys Med Rehab 1988; 69: 268–72

    CAS  Google Scholar 

  229. American College of Sports Medicine. Exercise and physical activity for older adults. Med Sci Sports Exerc 1998; 30: 992–1009

    Article  Google Scholar 

  230. Myers A, Young Y, Langlois J. Prevention of falls in the elderly. Bone 1996; 18 (1 Suppl.): 87S–101S

    Article  PubMed  CAS  Google Scholar 

  231. Jozsi AC, Campbell WW, Joseph L, et al. Changes in power with resistance training in older and younger men and women. J Gerontol A Biol Sci Med Sci 1999; 54 (11): M591–6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

S.M. Roth was supported by NIA Grant AG-00268. Some of the research outlined from the authors’ laboratory in the review was partially supported by NIH research contract AG-42148 (B.F. Hurley).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben F. Hurley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hurley, B.F., Roth, S.M. Strength Training in the Elderly. Sports Med 30, 249–268 (2000). https://doi.org/10.2165/00007256-200030040-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200030040-00002

Keywords

Navigation