Skip to main content
Log in

Optimisation of Sprinting Performance in Running, Cycling and Speed Skating

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

Sprinting performances rely strongly on a fast acceleration at the start of a sprint and on the capacity to maintain a high velocity in the phase following the start. Simulations based on a model developed in which the generation of metabolic power is related to the mechanical destinations of power showed that for short-lasting sprinting events, the best pacing strategy is an all out effort, even if this strategy causes a strong reduction of the velocity at the end of the race. Even pacing strategies should only be used in exercises lasting longer than 80 to 100 seconds.

Sprint runners, speed skaters and cyclists need a large rate of breakdown of energy rich phosphates in the first 4 to 5 seconds of the race (mechanical equivalent > 20 W/kg) in order to accelerate their body, and a power output of more than 10 W/kg in the phase following the start to maintain a high velocity. Maximal speed in running is mainly limited by the necessity to rotate the legs forwards and backwards relative to the hip joint. The acceleration phase, however, relies on powerful extensions of all leg joints. Through a comparison of the hindlimb design of highly specialised animal sprinters (as can be found among predators) and of long distance animal runners (as found among hoofed animals), it is illustrated that these 2 phases of a sprint rely on conflicting requirements: improvement of maximal speed would require lower moments of inertia of the legs whereas a faster acceleration would require the involvement of more muscle mass (not only of the hip and knee extensors but also of the plantar flexors).

Maximal speed in cycling and speed skating is not limited by the necessity to move leg segments but rather on air friction and rolling or ice friction. Since the drag coefficients found for speed skaters and cyclists (about 0.8) are considerably higher than those of more streamlined bodies, much progress can still be expected from the reduction of air friction. Speed skaters and especially cyclists show much smaller accelerations during the start than do sprint runners. Skaters might try to improve their very first push off by developing a start technique that allows a much more horizontally directed propulsive force. The small propulsive force at the onset of a cycling sprint is due to the gearing system. For sprint cycling (the 1000m time trail and the 4000m pursuit) much progress could be expected from the development of a gearing system that allows a considerably higher propulsive force at the onset of the race and that adapts itself automatically to the velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alexander RMcN, Bennet-Clark HC. Storage of elastic strain energy in muscle and other tissues. Nature 265: 114–117, 1977

    Article  PubMed  CAS  Google Scholar 

  • Alexander RMcN, Goldspink G. Mechanics and energetics of animal locomotion, Chapman and Hall, London, 1977

    Google Scholar 

  • Ballreich R, Kuhlow A. Biomechanik der Sportarten, Enke Verlag, Stuttgart, 1986

    Google Scholar 

  • Behncke H. Optimization models for the force and energy in competed ve sports. Mathematical Methods in the Applied Sciences 9: 298–311, 1977

    Article  Google Scholar 

  • Blickhan R. The spring-mass model for running and hopping. Journal of Biomechanics 22: 1217–1227, 1989

    Article  PubMed  CAS  Google Scholar 

  • Boileau RA, Maghew JL, Riner WF, Lussier L. Physiological characteristics of elite middle and long distance runners. Canadian Journal of Applied Sport Sciences 7: 167–172, 1982

    CAS  Google Scholar 

  • Brandt J. Headwinds, crosswinds and tailwinds. Bike Tech 7: 4–6, 1988

    Google Scholar 

  • Breul R. Quantitativ morphometrische und funktionell-anatomische Untersuchungen am Bewegungsapparat von Leichtatleten. Gegen-baurs morphologisches Jahrbuch Leipzig 124: 89–108, 1978

    CAS  Google Scholar 

  • Cavagna GA, Willems PA, Franzetti P, Detrembleur C. The two power limits conditioning stepfrequency in human running. Journal of Physiology 437: 95–108, 1991

    PubMed  CAS  Google Scholar 

  • Chapman AE. Hierarchy of changes induced by fatigue in sprinting. Canadian Journal of Applied Sport Sciences 7: 116–122, 1982

    CAS  Google Scholar 

  • Chapman AE, Caldwell GE. Kinetic limitations of maximal sprinting speed. Journal of Biomechanics 16: 79–83, 1983

    Article  PubMed  CAS  Google Scholar 

  • Coombs WP. Theoretical aspects of cursorial adaptations in dinosaurs. Quarterly Review of Biology 53: 393–418, 1978

    Article  Google Scholar 

  • Dapena J, Feltner ME. Effects of wind and altitude on the times of 100 meter sprint races. International Journal of Sports Biomechanics 3: 6–39, 1987

    Google Scholar 

  • Davies CTM. Effects of wind assistance and resistance on the forward motion of a runner. Journal of Applied Physiology 48: 702–709, 1980

    PubMed  CAS  Google Scholar 

  • de Groot G, Aben P, Hoefnagels K. Air friction and rolling resistance during cycling. In Marshall et al. (Eds) Proceedings of the XHIth ISB Congress, pp. 56–57, University of Western Australia, Perth, 1994

    Google Scholar 

  • de Groot G, de Boer RW, van Ingen Schenau GJ. Power output during cycling and speed skating. In Winter et al. (Eds) Biomechanics IX, pp. 555–559, Human Kinetics Publishers, Champaign, 1985

    Google Scholar 

  • de Haan A, van Ingen Schenau GJ, Ettema GJ, Huijing PA, Lodder MAN. Efficiency of rat medial gastrocnemius muscles in contractions with and without an active prestretch. Journal of Experimental Biology 141: 327–341, 1989

    PubMed  Google Scholar 

  • de Koning JJ. Biomechanical aspects of speed skating. Thesis, Free University, Amsterdam, 1991

    Google Scholar 

  • de Koning JJ, de Groot G, van Ingen Schenau GJ. Mechanical aspects of the sprint start in Olympic speed skating. International Journal of Sports Biomechanics 5: 151–168, 1989

    Google Scholar 

  • de Koning JJ, de Groot G, van Ingen Schenau GJ. A power equation for the sprint in speed skating. Journal of Biomechanics 25: 573–580, 1992a

    Article  PubMed  Google Scholar 

  • de Koning JJ, de Groot G, van Ingen Schenau GJ. Ice friction during speed skating. Journal of Biomechanics 25: 565–572, 1992b

    Article  PubMed  Google Scholar 

  • de Koning JJ, van Ingen Schenau GJ. The influence of winds on 100m and 200 meter sprint running. Proceedings of the Fourth International Symposium on Computer Simulation in Biomechanics, in press, 1994

    Google Scholar 

  • Di Prampero PE, Cortill G, Mognoni P, Saibene F. Equation of motion of a cyclist. Journal of Applied Physiology 47: 201–206, 1979

    PubMed  Google Scholar 

  • Dowell LJ, Jubela R, Mamaliga E. A cinematographical analysis of the 100 m dash during acceleration and at optimum velocity, acceleration zero. Journal of Sports Medicine 15: 20–25, 1975

    CAS  Google Scholar 

  • Faria IE. Energy expenditure, aerodynamics and medical problems in cycling: an update. Sports Medicine 14: 43–63, 1992

    Article  PubMed  CAS  Google Scholar 

  • Flindt R. Biologie in Zahlen, Gustav Fischer Verlag, Stuttgart, 1986

    Google Scholar 

  • Foster C, Snijder AC, Thompson NN, Green MA, Foley M, et al. Effect of pacing strategy on cycle time trial performance. Medicine and Science in Sports and Exercise 25: 383–388, 1993

    PubMed  CAS  Google Scholar 

  • Guissard N, Duchateau J, Hainant K. EMG and mechanical changes during sprint starts at different front block obliquities. Medicine and Science in Sports and Exercise 24: 1257–1263, 1992

    Article  PubMed  CAS  Google Scholar 

  • Henry FM. Prediction of world records in running sixty yards to twenty-six miles. Research Quarterly 26: 147–158, 1955

    Google Scholar 

  • Hildebrand M, Hurley JP. Energy of the oscillating legs of a fast-moving cheetah, pronghorn, jackrabbit and elephant. Journal of Morphology 184: 23–31, 1985

    Article  PubMed  CAS  Google Scholar 

  • Hirvonen J, Rekunen S, Rusko H, Harkonen M. Breakdown of high energy phosphate compounds and lactate accumulation during short supra maximal exercise. European Journal of Applied Physiology 56: 253–259, 1987

    Article  CAS  Google Scholar 

  • Ikai M. Biomechanics of sprint running with respect to the speed curve. Biomechanics I, pp. 282–290, Karger, Basle, 1968

    Google Scholar 

  • Is van O. The effect of winds on a bicyclist’s speed. Bike Tech 3: 1–6, 1984

    Google Scholar 

  • Jacobs R, van Ingen Schenau GJ. Control of an external force in leg extensions in humans. Journal of Physiology 457: 611–626, 1992a

    PubMed  CAS  Google Scholar 

  • Jacobs R, van Ingen Schenau GJ. Intermuscular coordination in a sprint push off. Journal of Biomechanics 25: 953–965, 1992b

    Article  PubMed  CAS  Google Scholar 

  • Kyle C. The prediction of perfomances of human powered vehicles using ergometry and drag measurements. Proceedings of the HPV-Symposium, pp. 3–19, TUE, Eindhoven, 1993

    Google Scholar 

  • Kyle CR, Caiozzo VJ. The effect of athletic clothing aerodynamics upon running speed. Medicine and Science in Sports and Exercise 18: 509–515, 1986

    Article  PubMed  CAS  Google Scholar 

  • Kyle CR, Wapert RA. The wind resistance of the human figure in sports. Proceedings of the First IOC World Congress on Sport Sciences, p. 287, US Olympic Committee, Colorado Springs, 1989

  • Lloyd BB. The energetics of running: an analysis of world records. Advances in Science 22: 515–530, 1966

    CAS  Google Scholar 

  • Mader A, Heck H, Liesen H, Hollmann W Simulative Berechnungen der dynamischen Änderungen von Phosphorylierungspotential, Laktatverteilung beim Sprint. Deutsches Zeitschrift für Sportmedizin 1: 14–22, 1983

    Google Scholar 

  • Margaria R. Biomechanics and energetics of muscular exercise. Clarendon Press, Oxford, 1976

    Google Scholar 

  • Mero A, Komi PV. Effects of supra-maximal velocity on biomechanical variables in sprinting. International Journal of Sports Biomechanics 1: 240–252, 1985

    Google Scholar 

  • Mero A, Komi PV, Gregor RJ. Biomechanics of sprint running. Sports Medicine 13: 376–392, 1992

    Article  PubMed  CAS  Google Scholar 

  • Mero A, Komi PV, Rusko H, Hirvonen J. Neuromuscular and anaerobic performance of sprinters at maximal and supra-maximal speed. International Journal of Sports Medicine 8: 55–60, 1987

    Article  PubMed  Google Scholar 

  • Myers M, Steudel K. Effect of limb mass and its distribution on the energetical cost of running. Journal of Experimental Biology 116: 363–373, 1985

    PubMed  CAS  Google Scholar 

  • Pandy MG, Kumar V, Berme N, Waldron KJ. The dynamics of quadrupedal locomotion. Journal of Biomechanical Engineering 110: 230–237, 1988

    Article  PubMed  CAS  Google Scholar 

  • Peronnet F, Thibault G. Mathematical analysis of running performance and world running records. Journal of Applied Physiology 67: 453–465, 1989

    PubMed  CAS  Google Scholar 

  • Pons DJ, Vaughan CL. Mechanics of cycling. In Vaughan (Ed.) Biomechanics of sport, pp. 289–315, CRC Press, Boca Raton, 1989

    Google Scholar 

  • Pugh LGCE. Air resistance in sport. Medicine in Sport, Vol. 9: Advances in exercise physiology, pp. 149–164. Karger, Basle, 1976

    Google Scholar 

  • Shanebrook JR, Jaszczak R. Aerodynamic drag analysis of runners. Medicine and Science in Sports and Exercise 8: 43–45, 1976

    Article  CAS  Google Scholar 

  • Sijm S. Racial differences and sport performance. Doctoral Thesis. Bewegingswetenschappen, Vrije Universiteit, Amsterdam, 1991 (in Dutch)

    Google Scholar 

  • Soden PD, Adeyefa BA. Forces applied to the bicycle during normal cycling. Journal of Biomechanics 12: 527–541, 1979

    Article  PubMed  CAS  Google Scholar 

  • Tanner JM. The physique of the Olympic athlete. George Allen and Un win Ltd, London, 1964

    Google Scholar 

  • Taylor CR, Heglund NC, Maloiy GMO. Energetics and mechanics of terrestrial locomotion: I. Metabolic energy consumption as a function of speed and body size in birds and mammals. Journal of Experimental Biology 97: 1–21, 1982

    PubMed  CAS  Google Scholar 

  • van Ingen Schenau GJ. The influence of air friction in speed skating. Journal of Biomechanics 15: 449–458, 1982

    Article  Google Scholar 

  • van Ingen Schenau GJ. From rotation to translation. Constraints on multi-joint movements and the unique action of bi-articular muscles. Human Movement Science 8: 301–337, 1989

    Article  Google Scholar 

  • van Ingen Schenau GJ. The design of the hindlimb in relation to running, sprinting and jumping. In Osse et al. (Eds) Biology, mechanics and sport, pp. 87–106, Biologische Raad, Amsterdam, 1992 (in Dutch)

    Google Scholar 

  • van Ingen Schenau GJ. Muscle involvement in cycling: can we get more efficient. Proceedings of the HPV-Symposium, pp. 22–31, TUE, Eindhoven, 1993

    Google Scholar 

  • van Ingen Schenau GJ, Bakker FC, de Groot G, de Koning JJ. Supra maximal test results do not detect seasonal progression in groups of elite speed skaters. European Journal of Applied Physiology and Occupational Physiology 64: 292–297, 1992b

    Article  Google Scholar 

  • van Ingen Schenau GJ, Bakker K. A biomechanical model of speed skating. Journal of Human Movement Studies 6: 1–18, 1980

    Google Scholar 

  • van Ingen Schenau GJ, Bobbert MF. On the global design of the hindlimb of quadrupeds. Acta Anatomica 146: 103–108, 1993

    Article  Google Scholar 

  • van Ingen Schenau GJ, Boots PJM, de Groot G, Snackers RJ, Woensel WWLM. The constrained control of force and position in multi-joint movements. Neuroscience 46: 197–207, 1992c

    Article  Google Scholar 

  • van Ingen Schenau GJ, Cavanagh PR. Power equations in endurance sports (survey). Journal of Biomechanics 23: 865–881, 1990

    Article  Google Scholar 

  • van Ingen Schenau GJ, de Boer RW, Geysel JSM, de Groot G. Supra-maximal tests in evaluating physical condition of male and female athletes. European Journal of Applied Physiology and Occupational Physiology 57: 6–9, 1988

    Article  Google Scholar 

  • van Ingen Schenau GJ, de Groot G, de Boer RW. The control of speed in elite female speed skaters. Journal of Biomechanics 18: 91–96, 1985

    Article  Google Scholar 

  • van Ingen Schenau GJ, de Groot G, Hollander AP. Some technical, physiological and anthropometrical aspects of speed skating. European Journal of Applied Physiology and Occupational Physiology 50: 343–354, 1983

    Article  Google Scholar 

  • van Ingen Schenau GJ, de Koning JJ, de Groot G. The distribution of anaerobic energy in 1000 and 4000 metre cycling bouts. International Journal of Sports Medicine 13: 447–451, 1992a

    Article  Google Scholar 

  • van Ingen Schenau GJ, de Koning JJ, de Groot G. A simulation of speed skating performances based on an equation of power production and power dissipation. Medicine and Science in Sports and Exercise 22: 718–728, 1990a

    Article  Google Scholar 

  • van Ingen Schenau GJ, Jacobs R, de Koning JJ. Can cycle power predict sprint running performance? European Journal of Applied Physiology and Occupational Physiology 63: 255–260, 1991

    Article  Google Scholar 

  • van Ingen Schenau GJ, van Woensel WWLM, Boots PJM, Snackers RJ, de Groot G. Determination and interpretation of mechanical power in human movement: application to ergometer cycling. European Journal of Applied Physiology and Occupational Physiology 16: 11–19, 1990b

    Google Scholar 

  • Vaughan CL. Simulation of a sprinter. Part I. Development of a model. International Journal of Bio-Medical Computing 14: 65–74, 1983

    Article  PubMed  CAS  Google Scholar 

  • Volkov NI, Lapin VI. Analysis of the velocity curve in sprint running. Medicine and Science in Sports and Exercise 11: 332–337, 1979

    Article  CAS  Google Scholar 

  • Ward-Smith AJ. A mathematical theory of running, based on the first law of thermodynamics and its application to the performance of world class athletes. Journal of Biomechanics 18: 337–349, 1985

    Article  PubMed  CAS  Google Scholar 

  • Webb P, Saris WHM, Schoffelen PFM, van Ingen Schenau GJ, ten Hoor F. The work in walking: a calorimetric study. Medicine and Science in Sports and Exercise 20: 331–337, 1988

    Article  PubMed  CAS  Google Scholar 

  • White JA, Al-Dawalibi MA. Assessment of the power performance of racing cyclists. Journal of Sport Sciences 4: 117–122, 1986

    Article  CAS  Google Scholar 

  • Whitt FR, Wilson DG. Bicycling science. MIT Press, Cambridge, 1974

    Google Scholar 

  • Wilberg RB, Pratt J. A survey of the race profiles of cyclists in the pursuit and kilo track events. Canadian Journal of Sports Sciences 13: 208–213, 1988

    CAS  Google Scholar 

  • Williams KR, Cavanagh PR. A model for the calculation of mechanical power during distance running. Journal of Biomechanics 16: 115–128, 1983

    Article  PubMed  CAS  Google Scholar 

  • Winter DA. A new definition of mechanical work done in human movement. Journal of Applied Physiology 46: 79–83, 1979

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Schenau, G.J.I., de Koning, J.J. & de Groot, G. Optimisation of Sprinting Performance in Running, Cycling and Speed Skating. Sports Medicine 17, 259–275 (1994). https://doi.org/10.2165/00007256-199417040-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199417040-00006

Keywords

Navigation