Skip to main content
Log in

Treatment of Acute Lymphoblastic Leukaemia

A New Era

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Acute lymphocytic leukaemia (ALL) is a heterogeneous group of disorders that result from the clonal proliferation and expansion of malignant lymphoid cells in the bone marrow, blood and other organs. Distinct clinicopathological ALL entities have been identified, resulting in the adoption of risk-oriented treatment approaches. Advances in ALL therapy have led to long-term survival rates of >80% in children. However, only ≈30–40% of adults achieve long-term disease-free survival. Contemporary ALL treatment programmes include induction, intensified consolidation, maintenance phases and CNS prophylaxis. The optimal treatment of Philadelphia chromosome-positive patients requires the addition of BCR-ABL tyrosine kinase inhibitors, such as imatinib, whereas allogeneic stem-cell transplantation remains the preferred approach for high-risk patients in first remission. Since only ≈38% of adult ALL patients are free of disease 5 years after diagnosis and the outcome of salvage chemotherapy is very poor (complete remission rates of 20–30%, median survival of 3–6 months), novel agents are desperately required. Of those currently in clinical studies, the outlook for sphingosomal vincristine, pegylated asparaginase (pegaspargase), liposomal annamycin, ABT-751, pemetrexed, talotrexin, nelarabine and the novel BCR-ABL kinase inhibitors is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gokbuget N, Hoelzer D. Recent approaches in acute lympho-blastic leukemia in adults. Rev Clin Exp Hematol 2002 Jun; 6(2): 114–41; discussion 200-2

    Article  PubMed  Google Scholar 

  2. Verma A, Stock W. Management of adult acute lymphoblastic leukemia: moving toward a risk-adapted approach. Curr Opin Oncol 2001 Jan; 13(1): 14–20

    Article  PubMed  CAS  Google Scholar 

  3. Ford AM, Martinez-Ramirez A. Therapeutic opportunities and targets in childhood leukemia. Clin Transl Oncol 2006 Aug; 8(8): 560–5

    Article  PubMed  CAS  Google Scholar 

  4. Larson RA, Dodge RK, Burns CP, et al. A five-drug remission induction regimen with intensive consolidation for adults with acute lymphoblastic leukemia: cancer and leukemia group B study 8811. Blood 1995 Apr 15; 85(8): 2025–37

    PubMed  CAS  Google Scholar 

  5. Annino L, Vegna ML, Camera A, et al. Treatment of adult acute lymphoblastic leukemia (ALL): long-term follow-up of the GIMEMA ALL 0288 randomized study. Blood 2002 Feb 1; 99(3): 863–71

    Article  PubMed  CAS  Google Scholar 

  6. Schaison G, Sommelet D, Bancillon A, et al. Treatment of acute lymphoblastic leukemia French protocol Fralle 83–87. Leukemia 1992; 6 Suppl. 2: 148–52

    Google Scholar 

  7. Linker CA, Levitt LJ, O’Donnell M, et al. Treatment of adult acute lymphoblastic leukemia with intensive cyclical chemotherapy: a follow-up report. Blood 1991 Dec 1; 78(11): 2814–22

    PubMed  CAS  Google Scholar 

  8. Nagura E, Kimura K, Yamada K, et al. Nation-wide randomized comparative study of doxorubicin, vincristine and pred-nisolone combination therapy with and without L-asparaginase for adult acute lymphoblastic leukemia. Cancer Chemother Pharmacol 1994; 33(5): 359–65

    Article  PubMed  CAS  Google Scholar 

  9. Thomas D, Cortes J, Faderl S, et al. Hyper-CVAD and Rituximab therapy in HIV-negative Burkitt (BL) or Burkitt-like (BLL) Leukemia/Lymphoma and mature B-cell acute lymphocytic leukemia (B-ALL) [abstract]. J Clin Oncol ASCO Annual Meeting Proceedings 2005; 23(10): 230

    Google Scholar 

  10. Kantarjian H, Thomas D, O’Brien S, et al. Long-term follow-up results of hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone (Hyper-CVAD), a dose-intensive regimen, in adult acute lymphocytic leukemia. Cancer 2004 Dec 15; 101(12): 2788–801

    Article  PubMed  CAS  Google Scholar 

  11. Rowe JM, Buck G, Burnett AK, et al. Induction therapy for adults with acute lymphoblastic leukemia: results of more than 1500 patients from the international ALL trial: MRC UKALL XII/ECOG E2993. Blood 2005 Dec 1; 106(12): 3760–7

    Article  PubMed  CAS  Google Scholar 

  12. Faderl S, Kantarjian HM, Thomas DA, et al. Outcome of Philadelphia chromosome-positive adult acute lymphoblastic leukemia. Leuk Lymphoma 2000 Jan; 36(3-4): 263–73

    Article  PubMed  CAS  Google Scholar 

  13. Cassileth PA, Harrington DP, Hines JD, et al. Maintenance chemotherapy prolongs remission duration in adult acute non-lymphocytic leukemia. J Clin Oncol 1988 Apr; 6(4): 583–7

    PubMed  CAS  Google Scholar 

  14. Fielding AK, Richards SM, Chopra R, et al. Outcome of 609 adults after relapse of acute lymphoblastic leukemia (ALL); an MRC UKALL12/ECOG 2993 study. Blood 2007 Feb 1; 109(3): 944–50

    Article  PubMed  CAS  Google Scholar 

  15. Deane M, Koh M, Foroni L, et al. FLAG-idarubicin and allogeneic stem cell transplantation for Ph-positive ALL beyond first remission. Bone Marrow Transplant 1998 Dec; 22(12): 1137–43

    Article  PubMed  CAS  Google Scholar 

  16. Herzig RH, Bortin MM, Barrett AJ, et al. Bone-marrow transplantation in high-risk acute lymphoblastic leukaemia in first and second remission. Lancet 1987 Apr 4; I(8536): 786–9

    Article  Google Scholar 

  17. Garcia-Manero G, Thomas DA. Salvage therapy for refractory or relapsed acute lymphocytic leukemia. Hematol Oncol Clin North Am 2001 Feb; 15(1): 163–205

    Article  PubMed  CAS  Google Scholar 

  18. Koller CA, Kantarjian HM, Thomas D, et al. The hyper-CVAD regimen improves outcome in relapsed acute lymphoblastic leukemia. Leukemia 1997 Dec; 11(12): 2039–44

    Article  PubMed  CAS  Google Scholar 

  19. Aguayo A, Cortes J, Thomas D, et al. Combination therapy with methotrexate, vincristine, polyethylene-glycol conjugated-as-paraginase, and prednisone in the treatment of patients with refractory or recurrent acute lymphoblastic leukemia. Cancer 1999 Oct 1; 86(7): 1203–9

    Article  PubMed  CAS  Google Scholar 

  20. Suki S, Kantarjian H, Gandhi V, et al. Fludarabine and cytosine arabinoside in the treatment of refractory or relapsed acute lymphocytic leukemia. Cancer 1993 Oct 1; 72(7): 2155–60

    Article  PubMed  CAS  Google Scholar 

  21. Kantarjian H, Gandhi V, Cortes J, et al. Phase 2 clinical and pharmacologic study of clofarabine in patients with refractory or relapsed acute leukemia. Blood 2003 Oct 1; 102(7): 2379–86

    Article  PubMed  CAS  Google Scholar 

  22. Kantarjian HM, Gandhi V, Kozuch P, et al. Phase I clinical and pharmacology study of clofarabine in patients with solid and hematologic cancers. J Clin Oncol 2003 Mar 15; 21(6): 1167–73

    Article  PubMed  CAS  Google Scholar 

  23. Berg SL, Blaney SM, Devidas M, et al. Phase II study of nelarabine (compound 506U78) in children and young adults with refractory T-cell malignancies: a report from the Children’s Oncology Group. J Clin Oncol 2005 May 20; 23(15): 3376–82

    Article  PubMed  CAS  Google Scholar 

  24. Cortes J, O’Brien S, Estey E, et al. Phase I study of liposomal daunorubicin in patients with acute leukemia. Invest New Drugs 1999; 17(1): 81–7

    Article  PubMed  CAS  Google Scholar 

  25. Candoni A, Michelutti A, Simeone E, et al. Efficacy of liposomal daunorubicin and cytarabine as reinduction chemotherapy in relapsed acute lymphoblastic leukaemia despite expression of multidrug resistance-related proteins. Eur J Haematol 2006 Oct; 77(4): 293–9

    Article  PubMed  CAS  Google Scholar 

  26. Owellen RJ, Owens Jr AH, Donigian DW. The binding of vincristine, vinblastine and colchicine to tubulin. Biochem Biophys Res Commun 1972 May 26; 47(4): 685–91

    Article  PubMed  CAS  Google Scholar 

  27. Owellen RJ, Hartke CA, Dickerson RM, et al. Inhibition of tubulin-microtubule polymerization by drugs of the Vinca alkaloid class. Cancer Res 1976 Apr; 36(4): 1499–502

    PubMed  CAS  Google Scholar 

  28. da Silva DP, de Oliveira CR, da Conceicao M, et al. Apoptosis as a mechanism of cell death induced by different chemothera-peutic drugs in human leukemic T-lymphocytes. Biochem Pharmacol 1996 May 17; 51(10): 1331–40

    Article  PubMed  CAS  Google Scholar 

  29. Harmon BV, Takano YS, Winterford CM, et al. Cell death induced by vincristine in the intestinal crypts of mice and in a human Burkitt’s lymphoma cell line. Cell Prolif 1992 Nov; 25(6): 523–36

    Article  PubMed  CAS  Google Scholar 

  30. Kobayashi H, Takemura Y, Holland JF, et al. Vincristine saturation of cellular binding sites and its cytotoxic activity in human lymphoblastic leukemia cells: mechanism of inoculum effect. Biochem Pharmacol 1998 Apr 15; 55(8): 1229–34

    Article  PubMed  CAS  Google Scholar 

  31. Haim N, Epelbaum R, Ben-Shahar M, et al. Full dose vincristine (without 2-mg dose limit) in the treatment of lymphomas. Cancer 1994 May 15; 73(10): 2515–9

    Article  PubMed  CAS  Google Scholar 

  32. Krishna R, Webb MS, St Onge G, et al. Liposomal and nonli-posomal drug pharmacokinetics after administration of liposome-encapsulated vincristine and their contribution to drug tissue distribution properties. J Pharmacol Exp Ther 2001 Sep; 298(3): 1206–12

    PubMed  CAS  Google Scholar 

  33. Guthlein F, Burger AM, Brandl M, et al. Pharmacokinetics and antitumor activity of vincristine entrapped in vesicular phos-pholipid gels. Anticancer Drugs 2002 Sep; 13(8): 797–805

    Article  PubMed  Google Scholar 

  34. Leonetti C, Scarsella M, Semple SC, et al. In vivo administration of liposomal vincristine sensitizes drug-resistant human solid tumors. Int J Cancer 2004 Jul 10; 110(5): 767–74

    Article  PubMed  CAS  Google Scholar 

  35. Webb MS, Logan P, Kanter PM, et al. Preclinical pharmacology, toxicology and efficacy of sphingomyelin/cholesterol liposomal vincristine for therapeutic treatment of cancer. Cancer Chemother Pharmacol 1998; 42(6): 461–70

    Article  PubMed  CAS  Google Scholar 

  36. Webb MS, Harasym TO, Masin D, et al. Sphingomyelin-cholesterol liposomes significantly enhance the pharmacokinetic and therapeutic properties of vincristine in murine and human tumour models. Br J Cancer 1995 Oct; 72(4): 896–904

    Article  PubMed  CAS  Google Scholar 

  37. Boman NL, Tron VA, Bally MB, et al. Vincristine-induced dermal toxicity is significantly reduced when the drug is given in liposomes. Cancer Chemother Pharmacol 1996; 37(4): 351–5

    Article  PubMed  CAS  Google Scholar 

  38. Gelmon KA, Tolcher A, Diab AR, et al. Phase I study of liposomal vincristine. J Clin Oncol 1999 Feb; 17(2): 697–705

    PubMed  CAS  Google Scholar 

  39. Sarris AH, Hagemeister F, Romaguera J, et al. Liposomal vincristine in relapsed non-Hodgkin’s lymphomas: early results of an ongoing phase II trial. Ann Oncol 2000 Jan; 11(1): 69–72

    Article  PubMed  CAS  Google Scholar 

  40. Thomas DA, Sarris AH, Cortes J, et al. Phase II study of sphingosomal vincristine in patients with recurrent or refractory adult acute lymphocytic leukemia. Cancer 2006 Jan 1; 106(1): 120–7

    Article  PubMed  CAS  Google Scholar 

  41. Thomas D, Garcia-Manero G, Faderl S. Preliminary results of phase I trial of sphingosomal vincristine (SV) and dexameth-asone in relapsed or refractory acute lymphocytic leukemia (ALL) [abstract]. Blood 2004; 104: 748a

    Google Scholar 

  42. Rodriguez MA, Sarris AH, East K. A phase II study of liposomal vincristine in CHOP with rituximab for elderly patients with untreated aggressive B-cell non-Hodgkin’s lymphoma (NHL) [abstract]. J Clin Oncol 2002 ASCO Annual Meeting 2002; 21: 284a

    Google Scholar 

  43. De Vita V, Hellman S, Rosenberg S. Principles and practices in oncology. 4th ed. Philadelphia (PA): JB Lippincott Co., 1993

    Google Scholar 

  44. Perez-Soler R, Priebe W. Anthracycline antibiotics with high liposome entrapment: structural features and biological activity. Cancer Res 1990 Jul 15; 50(14): 4260–6

    PubMed  CAS  Google Scholar 

  45. Ganzina F, Pacciarini MA, Di Pietro N. Idarubicin (4-demethoxydaunorubicin). A preliminary overview of preclinical and clinical studies. Invest New Drugs 1986; 4(1): 85–105

    CAS  Google Scholar 

  46. Priebe W, Van NT, Burke TG, et al. Removal of the basic center from doxorubicin partially overcomes multidrug resistance and decreases cardiotoxicity. Anticancer Drugs 1993 Feb; 4(1): 37–48

    Article  PubMed  CAS  Google Scholar 

  47. Horton D, Priebe W. Oxyhalogenation of glycals for the synthesis of anti-tumor-active 2t?-halo daunorubicin analogs. CarbohydrRes 1985 Feb 28; 136: 391–6

    Article  CAS  Google Scholar 

  48. Zou Y, Ling YH, Van NT, et al. Antitumor activity of free and liposome-entrapped annamycin, a lipophilic anthracycline antibiotic with non-cross-resistance properties. Cancer Res 1994Mar 15; 54(6): 1479–84

    PubMed  CAS  Google Scholar 

  49. Ling YH, Priebe W, Yang LY, et al. In vitro cytotoxicity, cellular pharmacology, and DNA lesions induced by annamycin, an anthracycline derivative with high affinity for lipid membranes. Cancer Res 1993 Apr 1; 53(7): 1583–9

    PubMed  CAS  Google Scholar 

  50. Kolonias D, Podona T, Savaraj N, et al. Comparison of annamycin to adriamycin in cardiac and MDR tumor cell systems. Anticancer Res 1999 Mar–Apr; 19 (2A): 1277–83

    Google Scholar 

  51. Booser DJ, Perez-Soler R, Cossum P, et al. Phase I study of liposomal annamycin. Cancer Chemother Pharmacol 2000; 46(5): 427–32

    Article  PubMed  CAS  Google Scholar 

  52. Andreef M, Giles F, Korblau S, et al. Phase I study of annamycin, a novel anthracycline, in patients with relapsed/ refractory acute myeloid leukemia and lymphoid leukemias [abstract no. 1211]. J of Clin Oncol Proceedings of ASCO 2001; 20: 303a

    Google Scholar 

  53. Booser DJ, Esteva FJ, Rivera E, et al. Phase II study of liposomal annamycin in the treatment of doxorubicin-resistant breast cancer. Cancer Chemother Pharmacol 2002 Jul; 50(1): 6–8

    Article  PubMed  CAS  Google Scholar 

  54. Capizzi RL. Asparaginase revisited. Leuk Lymphoma. 1993; 10 Suppl.: 147–50

    Article  PubMed  Google Scholar 

  55. Nandy P, Periclou AP, Avramis VI. The synergism of 6-mer-captopurine plus cytosine arabinoside followed by PEG-asparaginase in human leukemia cell lines (CCRF/CEM/0 and (CCRF/CEM/ara-C/7A) is due to increased cellular apoptosis. Anticancer Res 1998 Mar–Apr; 18(2A): 727–37

    PubMed  CAS  Google Scholar 

  56. Ortega JA, Nesbit Jr ME, Donaldson MH, et al. L-Asparaginase, vincristine, and prednisone for induction of first remission in acute lymphocytic leukemia. Cancer Res 1977 Feb; 37(2): 535–40

    PubMed  CAS  Google Scholar 

  57. Clavell LA, Gelber RD, Cohen HJ, et al. Four-agent induction and intensive asparaginase therapy for treatment of childhood acute lymphoblastic leukemia. N Engl J Med 1986 Sep 11; 315(11): 657–63

    Article  PubMed  CAS  Google Scholar 

  58. Sallan SE, Hitchcock-Bryan S, Gelber R, et al. Influence of intensive asparaginase in the treatment of childhood non-T-cell acute lymphoblastic leukemia. Cancer Res 1983 Nov; 43(11): 5601–7

    PubMed  CAS  Google Scholar 

  59. Amylon MD, Shuster J, Pullen J, et al. Intensive high-dose asparaginase consolidation improves survival for pediatric patients with T cell acute lymphoblastic leukemia and advanced stage lymphoblastic lymphoma: a Pediatric Oncology Group study. Leukemia 1999 Mar; 13(3): 335–42

    Article  PubMed  CAS  Google Scholar 

  60. Pession A, Valsecchi MG, Masera G, et al. Long-term results of a randomized trial on extended use of high dose L-asparaginase for standard risk childhood acute lymphoblastic leukemia. J Clin Oncol 2005 Oct 1; 23(28): 7161–7

    Article  PubMed  CAS  Google Scholar 

  61. Killander D, Dohlwitz A, Engstedt L, et al. Hypersensitive reactions and antibody formation during L-asparaginase treatment of children and adults with acute leukemia. Cancer 1976 Jan; 37(1): 220–8

    Article  PubMed  CAS  Google Scholar 

  62. Larson RA, Fretzin MH, Dodge RK, et al. Hypersensitivity reactions to L-asparaginase do not impact on the remission duration of adults with acute lymphoblastic leukemia. Leukemia 1998 May; 12(5): 660–5

    Article  PubMed  CAS  Google Scholar 

  63. Cheung NK, Chau IY, Coccia PF. Antibody response to Escher-ichia coli L-asparaginase: prognostic significance and clinical utility of antibody measurement. Am J Pediatr Hematol Oncol 1986 Summer; 8(2): 99–104

    PubMed  CAS  Google Scholar 

  64. Asselin BL, Whitin JC, Coppola DJ, et al. Comparative pharma-cokinetic studies of three asparaginase preparations. J Clin Oncol 1993 Sep; 11(9): 1780–6

    PubMed  CAS  Google Scholar 

  65. Panosyan EH, Seibel NL, Martin-Aragon S, et al. Asparaginase antibody and asparaginase activity in children with higher-risk acute lymphoblastic leukemia: Children’s Cancer Group Study CCG-1961. J Pediatr Hematol Oncol 2004 Apr; 26(4): 217–26

    Article  PubMed  Google Scholar 

  66. Avramis VI, Sencer S, Periclou AP, et al. A randomized comparison of native Escherichia coli asparaginase and polyethylene glycol conjugated asparaginase for treatment of children with newly diagnosed standard-risk acute lymphoblastic leukemia: a Children’s Cancer Group study. Blood 2002 Mar 15; 99(6): 1986–94

    Article  PubMed  CAS  Google Scholar 

  67. Keating MJ, Holmes R, Lerner S, et al. L-asparaginase and PEG asparaginase: past, present, and future. Leuk Lymphoma 1993; 10 Suppl.: 153–7

    Article  PubMed  Google Scholar 

  68. Holle LM. Pegaspargase: an alternative? Ann Pharmacother. 1997 May; 31(5): 616–24

    PubMed  CAS  Google Scholar 

  69. Hawkins DS, Park JR, Thomson BG, et al. Asparaginase pharmacokinetics after intensive polyethylene glycol-conjugated L-asparaginase therapy for children with relapsed acute lymphoblastic leukemia. Clin Cancer Res 2004 Aug 15; 10(16): 5335–41

    Article  PubMed  CAS  Google Scholar 

  70. Alfieri DR. Pegaspargase. Pediatr Nurs 1995 Sep–Oct; 21(5): 471–4, 490

    PubMed  CAS  Google Scholar 

  71. Graham ML. Pegaspargase: a review of clinical studies. Adv Drug Deliv Rev 2003 Sep 26; 55(10): 1293–302

    Article  PubMed  CAS  Google Scholar 

  72. Wetzler M, Sanford BL, Kurtzberg J, et al. Effective asparagine depletion with pegylated asparaginase results in improved outcomes in adult acute lymphoblastic leukemia: Cancer and Leukemia Group B Study 9511. Blood 2007; 109(10): 4164–7

    Article  PubMed  CAS  Google Scholar 

  73. Douer D, Yampolsky H, Cohen LJ, et al. Pharmacodynamics and safety of intravenous pegaspargase during remission induction in adults aged 55 years or younger with newly diagnosed acute lymphoblastic leukemia. Blood 2007; 109: 2744–50

    PubMed  CAS  Google Scholar 

  74. Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer 2004 Apr; 4(4): 253–65

    Article  PubMed  CAS  Google Scholar 

  75. Rowinsky EK, Donehower RC. The clinical pharmacology and use of antimicrotubule agents in cancer chemotherapeutics. Pharmacol Ther 1991 Oct; 52(1): 35–84

    Article  PubMed  CAS  Google Scholar 

  76. Distefano M, Scambia G, Ferlini C, et al. Anti-proliferative activity of a new class of taxanes (14beta-hydroxy-10-deacetylbaccatin III derivatives) on multidrug-resistance-positive human cancer cells. Int J Cancer 1997 Sep 4; 72(5): 844–50

    Article  PubMed  CAS  Google Scholar 

  77. Staretz ME, Hastie SB. Synthesis and tubulin binding of novel C-10 analogues of colchicine. J Med Chem 1993 Mar 19; 36(6): 758–64

    Article  PubMed  CAS  Google Scholar 

  78. Rowinsky EK. The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Annu Rev Med 1997; 48: 353–74

    Article  PubMed  CAS  Google Scholar 

  79. Tozer GM, Kanthou C, Parkins CS, et al. The biology of the combretastatins as tumour vascular targeting agents. Int J Exp Pathol 2002 Feb; 83(1): 21–38

    Article  PubMed  CAS  Google Scholar 

  80. Szczepankiewicz BG, Liu G, Jae HS, et al. New antimitotic agents with activity in multi-drug-resistant cell lines and in vivo efficacy in murine tumor models. J Med Chem 2001 Dec 6; 44(25): 4416–30

    Article  PubMed  CAS  Google Scholar 

  81. Gwaltney 2nd SL, Imade HM, et al. Novel sulfonate derivatives: potent antimitotic agents. Bioorg Med Chem Lett 2001 Jul 9; 11(13): 1671–3

    Article  PubMed  CAS  Google Scholar 

  82. Segreti JA, Polakowski JS, Koch KA, et al. Tumor selective antivascular effects of the novel antimitotic compound ABT-751: an in vivo rat regional hemodynamic study. Cancer Chemother Pharmacol 2004 Sep; 54(3): 273–81

    Article  PubMed  CAS  Google Scholar 

  83. Baguley BC, Holdaway KM, Thomsen LL, et al. Inhibition of growth of colon 38 adenocarcinoma by vinblastine and colchicine: evidence for a vascular mechanism. Eur J Cancer 1991; 27(4): 482–7

    Article  PubMed  CAS  Google Scholar 

  84. Belotti D, Vergani V, Drudis T, et al. The microtubule-affecting drug paclitaxel has antiangiogenic activity. Clin Cancer Res 1996 Nov; 2(11): 1843–9

    PubMed  CAS  Google Scholar 

  85. Petrangolini G, Cassinelli G, Pratesi G, et al. Antitumour and antiangiogenic effects of IDN 5390, a novel C-seco taxane, in a paclitaxel-resistant human ovarian tumour xenograft. Br J Cancer 2004 Apr 5; 90(7): 1464–8

    Article  PubMed  CAS  Google Scholar 

  86. Yamamoto K, Noda K, Yoshimura A, et al. Phase I study of E7010. Cancer Chemother Pharmacol 1998; 42(2): 127–34

    Article  PubMed  CAS  Google Scholar 

  87. Hande KNA, Berlin J, Meek K, et al. A phase I trial of ABT-751, a novel microtubulin inhibitor [abstract]. AACR NCI EORTC Mol Targets Cancer Ther 2002; 14(4): 28

    Google Scholar 

  88. Kobayashi H. Phase I results of ABT-751, a novel microtubulin inhibitor, administered daily x 7 every 3 weeks [abstract no. 2079]. Proc Am Soc Clin Oncol 2004; 22(14s): 146

    Google Scholar 

  89. Hande KR, Meek K, Lockhart AC, et al. Pharmacokinetics and safety of ABT-751, a novel microtubulin inhibitor [abstract no. 520]. Proc Am Soc Clin Oncol 2003; 22(7): 187

    Google Scholar 

  90. Funahashi Y, Koyanagi N, Kitoh K. Effect of E7010 on liver metastasis and life span of syngeneic C57BL/6 mice bearing orthotopically transplanted murine Colon 38 tumor. Cancer Chemother Pharmacol 2001; 47(2): 179–84

    Article  PubMed  CAS  Google Scholar 

  91. Koyanagi N, Nagasu T, Fujita F, et al. In vivo tumor growth inhibition produced by a novel sulfonamide, E7010, against rodent and human tumors. Cancer Res 1994 Apr 1; 54(7): 1702–6

    PubMed  CAS  Google Scholar 

  92. Iwamoto Y, Nishio K, Fukumoto H, et al. Preferential binding of E7010 to murine beta 3-tubulin and decreased beta 3-tubulin in E7010-resistant cell lines. Jpn J Cancer Res 1998 Sep; 89(9): 954–62

    Article  PubMed  CAS  Google Scholar 

  93. Yokoi A, Kuromitsu J, Kawai T, et al. Profiling novel sulfonamide antitumor agents with cell-based phenotypic screens and array-based gene expression analysis. Mol Cancer Ther 2002 Feb; 1(4): 275–86

    PubMed  CAS  Google Scholar 

  94. Owa T, Yokoi A, Yamazaki K, et al. Array-based structure and gene expression relationship study of antitumor sulfonamides including N-[2-[(4-hydroxyphenyl)amino]-3-pyridinyl]-4-methoxybenzenesulfonamide and N-(3-chloro-7-indolyl)-1,4-benzenedisulfonamide. J Med Chem 2002 Oct 24; 45(22): 4913–22

    Article  PubMed  CAS  Google Scholar 

  95. Galmarini CM. ABT-751 (Abbott). Curr Opin Investig Drugs 2005 Jun; 6(6): 623–30

    PubMed  CAS  Google Scholar 

  96. Sprague E, Fleming GF, Carr R, et al. Phase I study of 21-day continuous dosing of the oral antimitotic agent ABT-751 [abstract no. 518]. Proc Am Soc Clin Oncol 2003; 22(7): 198

    Google Scholar 

  97. Yee KW, Hagey A, Verstovsek S, et al. Phase 1 study of ABT-751, a novel microtubule inhibitor, in patients with refractory hematologic malignancies. Clin Cancer Res 2005 Sep 15; 11(18): 6615–24

    Article  PubMed  CAS  Google Scholar 

  98. Nogales E, Wolf SG, Downing KH. Structure of the alpha beta tubulin dimer by electron crystallography. Nature 1998 Jan 8; 391(6663): 199–203

    Article  PubMed  CAS  Google Scholar 

  99. Uppuluri S, Knipling L, Sackett DL, et al. Localization of the colchicine-binding site of tubulin. Proc Natl Acad Sci USA 1993 Dec 15; 90(24): 11598–602

    Article  PubMed  CAS  Google Scholar 

  100. Mancuso P, Burlini A, Pruneri G, et al. Resting and activated endothelial cells are increased in the peripheral blood of cancer patients. Blood 2001 Jun 1; 97(11): 3658–61

    Article  PubMed  CAS  Google Scholar 

  101. Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vascu-logenesis in physiological and pathological neovascularization. Circ Res. 1999 Aug 6; 85(3): 221–8

    Article  PubMed  CAS  Google Scholar 

  102. Monestiroli S, Mancuso P, Burlini A, et al. Kinetics and viability of circulating endothelial cells as surrogate angiogenesis marker in an animal model of human lymphoma. Cancer Res 2001 Jun 1; 61(11): 4341–4

    PubMed  CAS  Google Scholar 

  103. Cortes J, Plunkett W, O’Brien S. Phase I study of trimetrexate (TMTX) in acute leukemias [abstract no. 80]. Proc Annu Meet Am Assoc Cancer Res 1999; 5(18): 22a

    Google Scholar 

  104. Pappo A, Dubowy R, Ravindranath Y, et al. Phase II trial of trimetrexate in the treatment of recurrent childhood acute lymphoblastic leukemia: a Pediatric Oncology Group study. J Natl Cancer Inst 1990 Oct 17; 82(20): 1641–2

    Article  PubMed  CAS  Google Scholar 

  105. Tonkinson JL, Marder P, Andis SL, et al. Cell cycle effects of antifolate antimetabolites: implications for cytotoxicity and cytostasis. Cancer Chemother Pharmacol 1997; 39(6): 521–31

    Article  PubMed  CAS  Google Scholar 

  106. Gibbs D, Jackman A. Pemetrexed disodium. Nat Rev Drug Discov 2005 May; Suppl. 1: S16–17

  107. Lokiec F. Pemetrexed: new multitargeted antimetabolite [in French]. Rev Pneumol Clin 2005 Sep; 61 (4 Pt 2): 4S5–7

    Article  PubMed  CAS  Google Scholar 

  108. Eismann U, Oberschmidt O, Ehnert M, et al. Pemetrexed: mRNA expression of the target genes TS, GARFT and DHFR correlates with the in vitro chemosensitivity of human solid tumors. Int J Clin Pharmacol Ther 2005 Dec; 43(12): 567–9

    PubMed  CAS  Google Scholar 

  109. Chattopadhyay S, Zhao R, Tsai E, et al. The effect of a novel transition state inhibitor of methylthioadenosine phosphorylase on pemetrexed activity. Mol Cancer Ther 2006 Oct; 5(10): 2549–55

    Article  PubMed  CAS  Google Scholar 

  110. Faessel HM, Slocum HK, Jackson RC, et al. Super in vitro synergy between inhibitors of dihydrofolate reductase and inhibitors of other folate-requiring enzymes: the critical role of polyglutamylation. Cancer Res 1998 Jul 15; 58(14): 3036–50

    PubMed  CAS  Google Scholar 

  111. Gorlick R, Goker E, Trippett T, et al. Defective transport is a common mechanism of acquired methotrexate resistance in acute lymphocytic leukemia and is associated with decreased reduced folate carrier expression. Blood 1997 Feb 1; 89(3): 1013–8

    PubMed  CAS  Google Scholar 

  112. Wang Y, Zhao R, Goldman ID. Decreased expression of the reduced folate carrier and folypolyglutamate synthetase is the basis for acquired resistance to the pemetrexed antifolate (LY231514) in an L1210 murine leukemia cell line. Biochem Pharmacol 2003 Apr 1; 65(7): 1163–70

    Article  PubMed  CAS  Google Scholar 

  113. Gomez HL, Santillana SL, Vallejos CS, et al. A phase II trial of pemetrexed in advanced breast cancer: clinical response and association with molecular target expression. Clin Cancer Res 2006 Feb 1; 12 (3 Pt 1): 832–8

    Article  PubMed  CAS  Google Scholar 

  114. Hochster H, Kettner E, Kroning H, et al. Phase I/II dose-escalation study of pemetrexed plus irinotecan in patients with advanced colorectal cancer. Clin Colorectal Cancer 2005 Nov; 5(4): 257–62

    Article  PubMed  CAS  Google Scholar 

  115. Scagliotti GV. Pemetrexed plus carboplatin or oxaliplatin in advanced non-small cell lung cancer. Semin Oncol 2005 Apr; 32 (2 Suppl. 2): S5–8

    Article  PubMed  CAS  Google Scholar 

  116. Clarke SJ, Boyer MJ, Millward M, et al. A phase I/II study of emetrexed and vinorelbine in patients with non-small cell lung cancer. Lung Cancer 2005 Sep; 49(3): 401–12

    Article  PubMed  Google Scholar 

  117. Hanna NH. Second-line chemotherapy for non-small-cell lung cancer: recent data with pemetrexed. Clin Lung Cancer 2004 Apr; 5 Suppl. 2: S75–79

    Article  PubMed  CAS  Google Scholar 

  118. Ma CX, Nair S, Thomas S, et al. Randomized phase II trial of three schedules of pemetrexed and gemcitabine as front-line therapy for advanced non-small-cell lung cancer. J Clin Oncol 2005 Sep 1; 23(25): 5929–37

    Article  PubMed  CAS  Google Scholar 

  119. Zinner RG, Fossella FV, Gladish GW, et al. Phase II study of pemetrexed in combination with carboplatin in the first-line treatment of advanced nonsmall cell lung cancer. Cancer 2005 Dec 1; 104(11): 2449–56

    Article  PubMed  CAS  Google Scholar 

  120. Pivot X, Raymond E, Laguerre B, et al. Pemetrexed disodium in recurrent locally advanced or metastatic squamous cell carcinoma of the head and neck. Br J Cancer 2001 Sep 1; 85(5): 649–55

    Article  PubMed  CAS  Google Scholar 

  121. Oettle H, Richards D, Ramanathan RK, et al. A phase III trial of pemetrexed plus gemcitabine versus gemcitabine in patients with unresectable or metastatic pancreatic cancer. Ann Oncol 2005 Oct; 16(10): 1639–45

    Article  PubMed  CAS  Google Scholar 

  122. Scagliotti GV, Novello S. Pemetrexed and its emerging role in the treatment of thoracic malignancies. Expert Opin Investig Drugs 2003 May; 12(5): 853–63

    Article  PubMed  CAS  Google Scholar 

  123. Hazarika M, White Jr RM, Booth BP, et al. Pemetrexed in malignant pleural mesothelioma. Clin Cancer Res 2005 Feb 1; 11(3): 982–92

    PubMed  CAS  Google Scholar 

  124. Kerr C. Pemetrexed combination improves mesothelioma survival. Lancet Oncol 2005 Aug; 6(8): 548

    Article  PubMed  Google Scholar 

  125. Vogelzang NJ, Rusthoven JJ, Symanowski J, et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol 2003 Jul 15; 21(14): 2636–44

    Article  PubMed  CAS  Google Scholar 

  126. Latz JE, Rusthoven JJ, Karlsson MO, et al. Clinical application of a semimechanistic-physiologic population PK/PD model for neutropenia following pemetrexed therapy. Cancer Chemother Pharmacol 2006 Apr; 57(4): 427–35

    Article  PubMed  Google Scholar 

  127. Rosowsky A. PT523 and other aminopterin analogs with a hemiphthaloyl-L-ornithine side chain: exceptionally tight-binding inhibitors of dihydrofolate reductase which are transported by the reduced folate carrier but cannot form polygluta-mates. Curr Med Chem 1999 Apr; 6(4): 329–52

    PubMed  CAS  Google Scholar 

  128. Chen G, Wright JE, Rosowsky A. Dihydrofolate reductase binding and cellular uptake of nonpolyglutamatable antifo-lates: correlates of cytotoxicity toward methotrexate-sensitive and -resistant human head and neck squamous carcinoma cells. Mol Pharmacol 1995 Oct; 48(4): 758–65

    PubMed  CAS  Google Scholar 

  129. Kaufman Y, Ifergan I, Rothem L, et al. Coexistence of multiple mechanisms of PT523 resistance in human leukemia cells harboring 3 reduced folate carrier alleles: transcriptional silencing, inactivating mutations, and allele loss. Blood 2006 Apr 15; 107(8): 3288–94

    Article  PubMed  CAS  Google Scholar 

  130. Johnson JM, Meiering EM, Wright JE, et al. NMR solution structure of the antitumor compound PT523 and NADPH in the ternary complex with human dihydrofolate reductase. Biochemistry 1997 Apr 15; 36(15): 4399–411

    Article  PubMed  CAS  Google Scholar 

  131. Rosowsky A, Wright JE, Vaidya CM, et al. Synthesis and potent antifolate activity and cytotoxicity of B-ring deaza analogues of the nonpolyglutamatable dihydrofolate reductase inhibitor Nalpha-(4-amino-4-deoxypteroyl)-Ndelta-hemiphthaloyl-L-ornithine (PT523). J Med Chem 1998 Dec 17; 41(26): 5310–9

    Article  PubMed  CAS  Google Scholar 

  132. Rhee MS, Galivan J, Tyobeka EM, et al. Effect of a novel antifolate, N alpha-(4-amino-4-deoxypteroyl)-N delta-hemiphthaloyl-L-ornithine (PT523), on growth of H35 rat hepatoma and HEPG2 human hepatoma cells. Adv Exp Med Biol 1993; 338: 461–4

    Article  PubMed  CAS  Google Scholar 

  133. Zhao R, GaoF, Goldman ID. Marked suppression of the activity of some, but not all, antifolate compounds by augmentation of folate cofactor pools within tumor cells. Biochem Pharmacol 2001 Apr 1; 61(7): 857–65

    Article  PubMed  CAS  Google Scholar 

  134. Rosowsky A, Bader H, Wright JE, et al. Synthesis and biological activity of N omega-hemiphthaloyl-alpha,omega-diami-noalkanoic acid analogues of aminopterin and 3t?,5-dichloroaminopterin. J Med Chem 1994 Jul 8; 37(14): 2167–74

    Article  PubMed  CAS  Google Scholar 

  135. Westerhof GR, Schornagel JH, Kathmann I, et al. Carrier- and receptor-mediated transport of folate antagonists targeting folate-dependent enzymes: correlates of molecular-structure and biological activity. Mol Pharmacol 1995 Sep; 48(3): 459–71

    PubMed  CAS  Google Scholar 

  136. Rosowsky A, Bader H, Freisheim JH. Synthesis and biological activity of methotrexate analogues with two acid groups and a hydrophobic aromatic ring in the side chain. J Med Chem 1991 Feb; 34(2): 574–9

    Article  PubMed  CAS  Google Scholar 

  137. Giles F, Rizzieri DA, George S, et al. A phase I study of talvesta® (talotrexin) in relapsed or refractory leukemia or myelodysplastic syndrome [abstract]. ASH Annual Meeting Abstracts 2006; 108(11): 1968

    Google Scholar 

  138. Reist EJ, Goodman L. Synthesis of 9-Beta-D-Arabinofura-nosylguanine. Biochemistry 1964 Jan; 3: 15–8

    Article  PubMed  CAS  Google Scholar 

  139. Gandhi V, Keating MJ, Bate G, et al. Nelarabine. Nat Rev Drug Discov 2006 Jan; 5(1): 17–8

    Article  PubMed  CAS  Google Scholar 

  140. Gelfand EW, Lee JW, Cohen A. Sensitivity of T-leukemic cells to deoxyguanosine and arabinosyl guanine. Adv Exp Med Biol 1984; 165 PtB: 309–14

    PubMed  Google Scholar 

  141. Rodriguez Jr CO, Gandhi V. Arabinosylguanine-induced apoptosis of T-lymphoblastic cells: incorporation into DNA is a necessary step. Cancer Res 1999 Oct 1; 59(19): 4937–43

    PubMed  CAS  Google Scholar 

  142. Cohen MH, Johnson JR, Massie T, et al. Approval summary: nelarabine for the treatment of T-cell lymphoblastic leukemia/ lymphoma. Clin Cancer Res 2006 Sep 15; 12(18): 5329–35

    Article  PubMed  CAS  Google Scholar 

  143. Deangelo DJ, Yu D, Johnson JL, et al. Nelarabine induces complete remissions in adults with relapsed or refractory T-lineage acute lymphoblastic leukemia or lymphoblastic lymphoma: cancer and leukemia group B study 19801. Blood. Epub 2007 Mar 7

  144. Ottmann OG, Hoelzer D. The ABL tyrosine kinase inhibitor STI571 (Glivec) in Philadelphia positive acute lymphoblastic leukemia — promises, pitfalls and possibilities. Hematol J 2002; 3(1): 2–6

    Article  PubMed  Google Scholar 

  145. Hoelzer D. Advances in the management of Ph-positive ALL. Clin Adv Hematol Oncol 2006 Nov; 4(11): 804–5

    PubMed  Google Scholar 

  146. Jabbour E, Cortes J, Kantarjian HM, et al. Allogeneic stem cell transplantation for patients with chronic myeloid leukemia and acute lymphocytic leukemia after BCR-ABL kinase mutation-related imatinib failure. Blood 2006 Aug 15; 108(4): 1421–3

    Article  PubMed  CAS  Google Scholar 

  147. Weisberg E, Manley P, Mestan J, et al. AMN107 (nilotinib): a novel and selective inhibitor of BCR-ABL. Br J Cancer 2006 Jun 19; 94(12): 1765–9

    Article  PubMed  CAS  Google Scholar 

  148. von Bubnoff N, Manley PW, Mestan J, et al. BCR-ABL resistance screening predicts a limited spectrum of point mutations to be associated with clinical resistance to the Abl kinase inhibitor nilotinib (AMN107). Blood. 2006 Aug 15; 108(4): 1328–33

    Article  CAS  Google Scholar 

  149. Kantarjian H, Giles F, Wunderle L, et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med 2006 Jun 15; 354(24): 2542–51

    Article  PubMed  Google Scholar 

  150. Le Coutre P, Ottmann O, Gatterman N, et al. A phase II study of Nilotinib (AMN 107), a novel inhibitor of BCR-ABL, administered to imatinib resistant patients and intolerant patients with chronic myeloid leukaemia in accelerated phase (AP) [abstract no. 6531]. J Clin Oncol 2006; 24: 18s

    Article  Google Scholar 

  151. Klejman A, Schreiner SJ, Nieborowska-Skorska M, et al. The Src family kinase Hck couples BCR/ABL to STAT5 activation in myeloid leukemia cells. Embo J 2002 Nov 1; 21(21): 5766–74

    Article  PubMed  CAS  Google Scholar 

  152. Hu Y, Liu Y, Pelletier S, et al. Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Nat Genet 2004 May; 36(5): 453–61

    Article  PubMed  CAS  Google Scholar 

  153. Shah N, Rousselot P, Pasquini R, et al. Dasatinib vs high dose imatinib in patients with chronic phase CML resistant to imatinib: results of the CA180007 “START-R” randomised trial [abstract no. 6507]. J Clin Oncol 2006; 24: 338s

    Article  CAS  Google Scholar 

  154. Cortes J, Kim J, Rosti P, et al. Dasatinib in patients with CML myeloid blast crisis who are imatinib resistant or intolerant: results of the CA180006 “START-B” study [abstract no. 6529]. J Clin Oncol 2006; 24: 344s

    Article  Google Scholar 

  155. Coutre S, Martinelli G, Dombret H, et al. Dasatinib in patients with chronic myeloid leukaemia in lymphoid blast crisis or Philadelphia chromosome positive acute lymphoblastic leukaemia who are imatinib resistant or intolerant: results of the “START-L” study [abstract 6528].J Clin Oncol 2006; 24: 344s

    Google Scholar 

  156. Hochhaus A, Kantarjian H, Baccarani M, et al. Dasatinib efficacy and safety in patients with chronic phase CML resistant or intolerable to imatinib: results of the CA180013 “START C” phase II study [abstract no. 6508)]. J Clin Oncol 2006; 24: 339s

    Google Scholar 

  157. Talpaz M, Apperly J, Kim D, et al. Dasatinib phase II study in patients with accelerated phase CML who are resistant or intolerant to imatinib: results of the CA180005 “START-A” study (abstract 6526). J Clin Oncol 2006; 24: 343s

    Google Scholar 

  158. Bergstrom D, Clark J, Xiao A, et al. MK-0457, a novel multikinase inhibitor, inhibits BCR-ABL activity in patients with chronic myeloid leukemia (CML) and acute lymphocytic leukemia (ALL) with the T315I BCR-ABL mutation [abstract]. Blood 2006; 108: 637

    Google Scholar 

  159. Yeoh EJ, Ross ME, Shurtleff SA, et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002 Mar; 1(2): 133–43

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis J. Giles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apostolidou, E., Swords, R., Alvarado, Y. et al. Treatment of Acute Lymphoblastic Leukaemia. Drugs 67, 2153–2171 (2007). https://doi.org/10.2165/00003495-200767150-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200767150-00004

Keywords

Navigation