Skip to main content
Log in

Impact of Smoking on Asthma Therapy

A Critical Review of Clinical Evidence

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Airway inflammation is central to the pathophysiology of asthma, with treatment directed towards modification of this inflammation and its consequences. The relationship between cigarette smoking and airway inflammation is also well described, but relatively little data are available on the potential influence of smoking on asthmatic airway inflammation and its treatment. While cigarette smoking is common in people with asthma, with prevalence rates similar to the general population, studies in asthma have tended to concentrate on individuals who have never smoked. However, there is recent evidence that smoking may confer a degree of corticosteroid resistance in asthma, and this review examines the relationship between asthma and cigarette smoking, with particular reference to the impact of smoking on the response to treatment of asthma. Smoking has a number of known influences on drug activity and metabolism, but the mechanism underlying corticosteroid resistance in asthmatic smokers is not yet clear, although there are differences in the nature of the airway inflammation in individuals with asthma who smoke compared with nonsmoking asthmatic patients. Encouragingly, there is some evidence that smoking cessation may at least partially restore corticosteroid responsiveness in asthmatic ex-smokers. Smoking cessation measures must be given a high priority in individuals with asthma who smoke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. ERS/ELF. European Lung White Book: the first comprehensive study on respiratory health in Europe. Lausanne: European Respiratory Society Journals, 2003

    Google Scholar 

  2. O’Byrne P, Inman M. The clinical expression of allergy in the lungs. Allergy 1999; 54: 7–14

    PubMed  Google Scholar 

  3. Peat J, Beasley R, Spijker J, et al. Prevalence of asthma in adults in Bussleton, Western Australia. BMJ 1992; 305: 1326–9

    Article  PubMed  CAS  Google Scholar 

  4. Robertson CF, Roberts MF, JH Kappers. Asthma prevalence in Melbourne school-children: have we reached the peak? Med J Australia 2004; 180: 273–6

    PubMed  Google Scholar 

  5. Current asthma prevalence percents: by age, United States: National Health Interview Survey, 2001 [online]. Available from URL: http://www.cdc.gov/asthma/NHIS/2001_Table4.1.html [Accessed 2005 Jun 13]

  6. Sears M. The definition and diagnosis of asthma. Allergy 1993; 48: 12–6

    Article  PubMed  CAS  Google Scholar 

  7. Global Initiative for Asthma: global strategy for asthma management and prevention. NHLBI/WHO Workshop report 2002: NIH Publication No. 02-3659 [online]. Available from URL: ## [Accessed 2005 May 26]

  8. Bel E. Clinical phenotypes of asthma. Curr Opin Pulm Med 2004; 10: 44–50

    Article  PubMed  Google Scholar 

  9. Djukanovic R, Roche W, Wilson J, et al. Mucosal inflammation in asthma. Am Rev Respir Dis 1990; 142: 434–57

    PubMed  CAS  Google Scholar 

  10. Busse W, Lemanske R. Asthma. N Engl J Med 2001; 344: 350–62

    Article  PubMed  CAS  Google Scholar 

  11. Bousquet J, Jeffery P, Busse W, et al. Asthma: from bron-choconstriction to airways inflammation and remodelling. Am J Respir Crit Care Med 2000; 161: 1720–45

    PubMed  CAS  Google Scholar 

  12. Larche M, Robinson D, Kay A. The role of T lymphocytes in the pathogenesis of asthma. J Allergy Clin Immunol 2003; 111: 450–63

    Article  PubMed  CAS  Google Scholar 

  13. Brightling C, Bradding P, Symon F, et al. Mast cell infiltration of airway smooth muscle. N Engl J Med 2002; 346: 1699–705

    Article  PubMed  Google Scholar 

  14. Carroll N, Cooke C, James A. The distribution of eosinophils and lymphocytes in the large and small airways of asthmatics. Eur Respir J 1997; 10: 292–300

    Article  PubMed  CAS  Google Scholar 

  15. Kraft M, Djukanovic R, Wilson S, et al. Alveolar tissue inflammation in asthma. Am J Respir Crit Care Med 1996; 154: 1505–10

    PubMed  CAS  Google Scholar 

  16. Laitinen L, Laitinen A, Haahtela T. Airway mucosal inflammation even in patients with newly diagnosed asthma. Am Rev Respir Dis 1993; 147: 697–704

    PubMed  CAS  Google Scholar 

  17. Vignola A, Chanez P, Campbell A, et al. Airway inflammation in mild, intermittent, and persistent asthma. Am J Respir Crit Care Med 1998; 157: 403–9

    PubMed  CAS  Google Scholar 

  18. Bradley B, Azzawi M, Jacobson M, et al. Eosinophils, T-lymphocytes, mast cells and macrophages in bronchial biopsy specimens from atopic subjects without asthma: comparison with biopsy specimens from atopic subjects without asthma and normal control subjects and relationship to bronchial hyperresponsiveness. J Allergy Clin Immunol 1991; 88: 661–4

    Article  PubMed  CAS  Google Scholar 

  19. Wardlaw A, Dunnette S, Gleich G, et al. Eosinophils and mast cells in bronchoalveolar lavage in subjects with mild asthma: relationship to bronchial reactivity. Am Rev Respir Dis 1988; 137: 62–9

    Article  PubMed  CAS  Google Scholar 

  20. Pin I, Gibson P, Kolendowicz R, et al. Use of induced sputum cell counts to investigate airway inflammation in asthma. Thorax 1992; 47: 25–9

    Article  PubMed  CAS  Google Scholar 

  21. Leckie M, ten Brinke A, Khan J, et al. Effects of an interleukin 5 blocking monoclonal antibody on eosinophils, airway hyperresponsiveness, and the late asthmatic response. Lancet 2000; 356: 2144–8

    Article  PubMed  CAS  Google Scholar 

  22. Wilson J, Djukanovic R, Howarth P, et al. Lymphocyte activation in bronchoalveolar lavage and peripheral blood in atopic asthma. Am Rev Respir Dis 1992; 145: 958–60

    PubMed  CAS  Google Scholar 

  23. Walker C, Kaegi M, Braun P, et al. Activated T-lymphocytes and eosinophils in bronchoalveolar lavage from subjects with asthma correlated with disease severity. J Allergy Clin Immunol 1991; 88: 935–42

    Article  PubMed  CAS  Google Scholar 

  24. Djukanovic R, Wilson J, Britten K, et al. Quantification of mast cells and eosinophils in the bronchial mucosa of symptomatic asthmatics and healthy control subjects using immunocytochemistry. Am Rev Respir Dis 1990; 142: 863–71

    PubMed  CAS  Google Scholar 

  25. Bradding P. Interleukins (IL)-4, -5, -6 and TNFa in normal and asthmatic human airways: evidence for the human mast cell as an important source of these cytokines. Am J Respir Cell Mol Biol 1994; 10: 471–80

    PubMed  CAS  Google Scholar 

  26. Hawrylowicz C, Lee T. Monocytes, macrophages and dendritic cells. In: Barnes P, Roger I, Thomson N, editors. Asthma: basic mechanisms and clinical management. London: Academic Press, 1998: 127–40

    Google Scholar 

  27. Collins J, Wardlaw A, Cromwell O, et al. Mast cells and neutrophils in bronchoalveolar lavage from asthmatics [abstract]. J Allergy Clin Immunol 1986; 77 (1 Pt 2): 209

    Google Scholar 

  28. Tanizaki Y, Kitani H, Okazaki M, et al. Changes in the proportions of bronchoalveolar lymphocytes, neutrophils, and baso-philic cells and the release of histamine and leukotrienes from bronchoalveolar cells in patients with steroid-dependent intractable asthma. Int Arch Allergy Immunol 1993; 101: 196–202

    Article  PubMed  CAS  Google Scholar 

  29. Frangova V, Sacco O, Silvestri M, et al. BAL neutrophilia in asthmatic patients: a by-product of eosinophil recruitment. Chest 1996; 110: 1236–42

    Article  PubMed  CAS  Google Scholar 

  30. Beasley R, Roche W, Roberts J, et al. Cellular events in the bronchi in mild asthma and after bronchial provocation. Am Rev Respir Dis 1989; 139: 806–17

    PubMed  CAS  Google Scholar 

  31. Bousquet J, Chanez P, Lacoste P, et al. Eosinophilic inflammation in asthma. N Engl J Med 1990; 323: 1033–9

    Article  PubMed  CAS  Google Scholar 

  32. Wenzel S, Schwartz L, Langmack E, et al. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med 1999; 160: 1001–8

    PubMed  CAS  Google Scholar 

  33. Wenzel S, Szefler S, Leung D, et al. Bronchoscopic evaluation of severe asthma: persistent inflammation associated with high dose glucocorticoids. Am J Respir Crit Care Med 1997; 156: 737–43

    PubMed  CAS  Google Scholar 

  34. Jatakanon A, Uasuf C, Maziak W, et al. Neutrophilic inflammation in severe persistent asthma. Am J Respir Crit Care Med 1999; 160: 1532–9

    PubMed  CAS  Google Scholar 

  35. Louis R, Lau L, Bron A, et al. The relationship between airways inflammation and asthma severity. Am J Respir Crit Care Med 2000; 161: 9–16

    PubMed  CAS  Google Scholar 

  36. Little S, MacLeod K, Chalmers G, et al. Association of forced expiratory volume with disease duration and sputum neutrophils in chronic asthma. Am J Med 2002; 112: 446–52

    Article  PubMed  Google Scholar 

  37. Sur S, Crotty T, Kephart G, et al. Sudden onset fatal asthma: a distinct entity with few eosinophils and relatively more neutrophils in the airway submucosa. Am Rev Respir Dis 1993; 148: 713–9

    Article  PubMed  CAS  Google Scholar 

  38. Turner M, Hussack P, Sears M, et al. Exacerbations of asthma without sputum eosinophilia. Thorax 1995; 50: 1057–61

    Article  PubMed  CAS  Google Scholar 

  39. Fahy J, Kim K, Liu J, et al. Prominent neutrophilic inflammation in sputum from subjects with asthma exacerbations. J Allergy Clin Immunol 1995; 95: 843–52

    Article  PubMed  CAS  Google Scholar 

  40. Ordonez C, Shaughnessy T, Matthey M, et al. Increased neutrophil numbers and IL-8 levels in airway secretions in acute severe asthma: clinical and biological significance. Am J Respir Crit Care Med 2000; 161: 1185–90

    PubMed  CAS  Google Scholar 

  41. Walker A, O’Brien M, Traynor J, et al. Living in Britain: results from the 2001 General Household Survey. London: Office for National Statistics, 2002: 115–21

    Google Scholar 

  42. Nelson E. The miseries of passive smoking. Hum Exp Toxicol 2001; 20: 61–83

    Article  PubMed  CAS  Google Scholar 

  43. Swauger J, Steichen T, Murphy P, et al. An analysis of the mainstream smoke chemistry of sample in the US cigarette market acquired between 1995 and 2000. Regul Toxicol Pharmacol 2002; 35: 142–56

    Article  PubMed  CAS  Google Scholar 

  44. International Agency for Research on Cancer (IARC): summaries & evaluations. Tobacco smoking. Vol. 83. Lyon: IARC, 2002 [online]. Available from URL: http://www.inchem.org/documents/iarc/vol83/01-smoking.html

  45. Hoffmann D, Wydner D. Chemical constituents and bioactivity of tobacco smoke. IARC Sci Publ 1986; 74: 145–65

    PubMed  Google Scholar 

  46. Sobol B, Van Voorhies L, Emirgil C. Detection of acute effects of cigarette smoking on airway dynamics: a critical and comparative study of pulmonary function tests. Thorax 1977; 32: 312–6

    Article  PubMed  CAS  Google Scholar 

  47. Jensen E, Dahl R, Steffensen F. Bronchial reactivity to cigarette smoke in smokers: repeatability, relationship to methacholine reactivity, smoking and atopy. Eur Respir J 1998; 11: 670–6

    PubMed  CAS  Google Scholar 

  48. Kharitonov S, Robbins R, Yates D, et al. Acute and chronic effects of cigarette smoking on exhaled nitric oxide. Am J Respir Crit Care Med 1995; 152: 609–12

    PubMed  CAS  Google Scholar 

  49. Gerrard J, Cockcroft D, Mink J, et al. Increased non-specific bronchial reactivity in cigarette smokers with normal lung function. Am Rev Respir Dis 1980; 12: 577–81

    Google Scholar 

  50. Malo J, Filiatrault S, Martin R. Bronchial responsiveness to inhaled methacholine in young asymptomatic smokers. J Appl Physiol 1982; 51: 1464–70

    Google Scholar 

  51. Barnes P. Inhaled glucocorticoids for asthma. N Engl J Med 1995; 332: 868–75

    Article  PubMed  CAS  Google Scholar 

  52. Taylor R, Gross E, Holland F, et al. Bronchial reactivity to inhaled histamine and annual rate of decline in FEV1 in male smokers and ex-smokers. Thorax 1985; 40: 9–16

    Article  PubMed  CAS  Google Scholar 

  53. Camilli A, Burrows B, Knudson R, et al. Longitudinal changes in forced expiratory volume in one second in adults: effects of smoking and smoking cessation. Am Rev Respir Dis 1987; 135: 794–9

    PubMed  CAS  Google Scholar 

  54. Xiping X, Dockery D, Ware J, et al. Effects of cigarette smoking on rate of loss of lung function in adults: a longitudinal assessment. Am Rev Respir Dis 1992; 146: 1345–8

    Google Scholar 

  55. Lange P, Parner J, Vestbo J, et al. A 15 year follow-up study of ventilatory function in adults with asthma. N Engl J Med 1998; 339: 1194–200

    Article  PubMed  CAS  Google Scholar 

  56. Fletcher C, Peto R, Tinker C, et al. The natural history of chronic bronchitis and emphysema: an eight year study of early chronic obstructive lung disease in working men in London. New York: Oxford University Press, 1976

    Google Scholar 

  57. Anderson D, Ferris B. Role of tobacco smoking in the causation of chronic respiratory disease. N Engl J Med 1962; 267: 787–94

    Article  PubMed  CAS  Google Scholar 

  58. Burrows B, Knudson R, Cline M, et al. Quantitative relationships between cigarette smoking and ventilatory function. Am Rev Respir Dis 1977; 115: 195–205

    PubMed  CAS  Google Scholar 

  59. Peters J, Ferris B. Smoking, pulmonary function, and respiratory symptoms in a college age group. Am Rev Respir Dis 1967; 95: 774–8

    PubMed  CAS  Google Scholar 

  60. Seeley J, Zuskin E, Bouhuys A. Cigarette smoking: objective evidence for lung damage in teenagers. Science 1971; 172: 41–3

    Article  Google Scholar 

  61. Tashkin D, Clark V, Coulson A, et al. The UCLA population studies of chronic obstructive pulmonary diseases: VIII. Effects of smoking cessage on lung function: a prospective study of a free-living population. Am Rev Respir Dis 1984; 130: 707–15

    CAS  Google Scholar 

  62. Viegi G, Paoletti P, Predilitto R. Prevalence of respiratory symptoms in an unpolluted area of Northern Italy. Eur Respir J 1988; 1: 311–8

    PubMed  CAS  Google Scholar 

  63. Dockery D, Speizer F, Ferris B, et al. Cumulative and reversible effects of lifetime smoking on simple tests of lung function in adults. Am Rev Respir Dis 1988; 137: 286–92

    PubMed  CAS  Google Scholar 

  64. Buist A, Ghezzo H, Anthonisen N, et al. Relationship between the single breath N2 test and age, sex, and smoking habit in three North American cities. Am Rev Respir Dis 1979; 120: 305–18

    PubMed  CAS  Google Scholar 

  65. Kauffmann F, Tessier J, Oriol P. Adult passive smoking in the home environment: a risk factor for chronic airflow limitation. Am J Epidemiol 1983; 117: 269–80

    PubMed  CAS  Google Scholar 

  66. Chen Y, Home S, Dosman J. Increased susceptibility to lung dysfunction in female smokers. Am Rev Respir Dis 1991; 143: 1224–30

    PubMed  CAS  Google Scholar 

  67. Xu X, Weiss S, Rijcken B, et al. Smoking, changes in smoking habits, and rate of decline in FEV1: new insight into gender differences. Eur Respir J 1994; 7: 1056–61

    Article  PubMed  CAS  Google Scholar 

  68. Seltzer C, Siegelaub A, Friedman G, et al. Differences in pulmonary function related to smoking habits and race. Am Rev Respir Dis 1974; 110: 958–608

    Google Scholar 

  69. Home S, To T, Cockcroft D. Ethnic differences in the prevalence of pulmonary airflow obstruction among grain workers. Chest 1989; 95: 992–6

    Article  Google Scholar 

  70. Vollmer W, Enright P, Pedula K, et al. Race and gender differences in the effects of smoking on lung function. Chest 2000; 117: 764–72

    Article  PubMed  CAS  Google Scholar 

  71. Tashkin D, Coulson A, Clark A, et al. Respiratory symptoms and lung function in habitual heavy smokers of marijuana alone, smokers of marijuana and tobacco, smokers of tobacco alone, and non-smokers. Am Rev Respir Dis 1987; 136: 209–16

    Google Scholar 

  72. Gong H, Fligiel S, Tashkin D, et al. Tracheobronchial changes in habitual heavy smokers of marijuana with and without tobacco. Am Rev Respir Dis 1987; 136: 142–9

    Article  PubMed  Google Scholar 

  73. Fligiel S, Roth M, Kleerup E, et al. Tracheobronchial histopathology in habitual smokers of cocaine, marijuana and/or tobacco. Chest 1988; 112: 319–26

    Article  Google Scholar 

  74. Roth M, Arora A, Barsky S, et al. Airway inflammation in young marijuana and tobacco smokers. Am J Respir Crit Care Med 1998; 157: 928–37

    PubMed  CAS  Google Scholar 

  75. Eidelman D, Saetta M, Ghezzo H, et al. Cellularity of the alveolar walls in smokers and its relation to alveolar destruction. Am Rev Respir Dis 1990; 141: 1547–52

    PubMed  CAS  Google Scholar 

  76. Thompson AB, Daughton D, Robbins R, et al. Intraluminal airway inflammation in chronic bronchitis: characterisation and correlation with clinical parameters. Am Rev Respir Dis 1989; 104: 1527–37

    Article  Google Scholar 

  77. Hunninghake G, Crystal R. Cigarette smoking and lung destruction: accumulation of neutrophils in the lungs of cigarette smokers. Am Rev Respir Dis 1983; 128: 83–838

    Google Scholar 

  78. Di Stefano A, Capelli A, Lusuardi M, et al. Severity of airflow limitation is associated with severity of airway inflammation in smokers. Am J Respir Crit Care Med 1998; 158: 1277–85

    PubMed  Google Scholar 

  79. Althuis M, Sexton M, Prybylski D. Cigarette smoking and asthma symptom severity among adult asthmatics. J Asthma 1999; 36: 257–64

    Article  PubMed  CAS  Google Scholar 

  80. Siroux V, Pin I, Oryszcyn MP, et al. Relationships of active smoking to asthma and asthma severity in the EGEA study. Eur Respir J 2000; 15: 470–7

    Article  PubMed  CAS  Google Scholar 

  81. Silverman R, Boudreaux E, Woodruff P, et al. Cigarette smoke among asthmatic subjects presenting to 64 emergency departments. Chest 2003; 123: 1472–9

    Article  PubMed  Google Scholar 

  82. Sippel J, Pedula K, Vollmer W, et al. Association of smoking with hospital based care and quality of life in patients with obstructive lung disease. Chest 1999; 115: 691–6

    Article  PubMed  CAS  Google Scholar 

  83. Turner M, Noertjojo K, Vedal S, et al. Risk factors for near fatal asthma: a case-control study in hospitalised patients with asthma. Am J Respir Crit Care Med 1998; 157: 1804–9

    PubMed  CAS  Google Scholar 

  84. Walsh L, Wong C, Cooper S, et al. Morbidity in asthma in relation to regular treatment: a community based study. Thorax 1999; 54: 296–300

    Article  PubMed  CAS  Google Scholar 

  85. Apostol G, Jacobs G, Tsai A, et al. Early life factors contribute to the decrease in lung function between ages of 18–40. Am J Respir Crit Care Med 2002; 166: 166–72

    Article  PubMed  Google Scholar 

  86. Ulrik C, Frederiksen J. Mortality and markers of risk of asthma death among 1075 outpatients with asthma. Chest 1995; 108: 10–5

    Article  PubMed  CAS  Google Scholar 

  87. Marquette C, Saulnier F, Leroy O, et al. Long term prognosis of near fatal asthma: a 6-year follow-up study of 145 asthmatic patients who underwent mechanical ventillation for a near fatal asthma attack. Am Rev Respir Dis 1992; 146: 76–81

    PubMed  CAS  Google Scholar 

  88. LeSon S, Gershwin E. Risk factors for asthmatic patients requiring intubation: III. Observations in young adults. J Asthma 1996; 33: 27–35

    Article  PubMed  CAS  Google Scholar 

  89. Hanania N, David-Wang A, Kesten S, et al. Factors associated with emergency department dependence of patients with asthma. Chest 1997; 111: 290–5

    Article  PubMed  CAS  Google Scholar 

  90. Prescott E, Lange P, Vestbo J, et al. Effect of gender on hospital admissions for asthma and prevalence of self reported asthma: a prospective study based on a sample of the general population. Thorax 1997; 52: 287–9

    Article  PubMed  CAS  Google Scholar 

  91. Ulrik C, Lange P. Decline in lung function an adults with bronchial asthma. Am J Respir Crit Care Med 1994; 150: 629–34

    PubMed  CAS  Google Scholar 

  92. O’Connor G, Weiss S, Tager I, et al. The effect of passive smoking on pulmonary function and non-specific bronchial responsiveness in a population based sample of children and young adults. Am Rev Respir Dis 1987; 135: 800–4

    PubMed  Google Scholar 

  93. FDA. Drag effects can go up in smoke. FDA Consum 1979 Mar; 13: 17–8

    Google Scholar 

  94. Zevin S, Benowitz N. Drag interactions with tobacco smoking: an update. Clin Pharmacokinet 1999; 36: 425–38

    Article  PubMed  CAS  Google Scholar 

  95. Coney A. Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons. Cancer Res 1982; 42: 4875–917

    Google Scholar 

  96. Wrighton S, VandenBranden M, Ring B. The human drug metabolising cytochromes P 450. J Pharmacokinet Biopharm 1996; 24: 461–73

    PubMed  CAS  Google Scholar 

  97. Meyer U. Overview of enzymes of drug metabolism. J Pharmacokinet Biopharm 1996; 24: 449–59

    PubMed  CAS  Google Scholar 

  98. Lee B, Benowitz N, Jacob III P. Cigarette abstinence, nicotine gum, and theophylline disposition. Ann Intern Med 1987; 106: 553–5

    PubMed  CAS  Google Scholar 

  99. Spigset O, Carleborg L, Hedenmalm K, et al. Effect of cigarette smoking on fluvoxamine pharmacokinetics in humans. Clin Pharmacol Ther 1995; 58: 399–403

    Article  PubMed  CAS  Google Scholar 

  100. Boston Collaborative Drag Surveillance Programme. Clinical depression of the central nervous system due to diazepam and chlordiazepoxide in relation to cigarette smoking and age. N Engl J Med 1973; 288: 277–80

    Article  Google Scholar 

  101. Pantuck E, Pantuck C, Anderson K, et al. Cigarette smoking and chlorpromazine disposition and actions. Clin Pharmacol Ther 1982; 31: 533–8

    Article  PubMed  CAS  Google Scholar 

  102. Johnson R, Horowitz M, Maddox A, et al. Cigarette smoking and rate of gastric emptying: effect on alcohol absorption. BMJ 1991; 302: 20–3

    Article  PubMed  CAS  Google Scholar 

  103. Walle T, Walle U, Cowart T, et al. Selective induction of propanolol metabolism by smoking: additional effects on renal clearance of metabolites. J Pharmacol Exp Ther 1987; 241: 928–33

    PubMed  CAS  Google Scholar 

  104. Buhler F, Vasenen K, Watters J, et al. Impact of smoking on heart attacks, strokes, blood pressure control, drug dose and quality of life aspects in the International Primary Prevention Study in Hypertension. Am Heart J 1988; 115: 282–8

    Article  PubMed  CAS  Google Scholar 

  105. Bolli P, Buhler F, McKenzie J. Smoking, antihypertensive treatment benefit, and comprehensive antihypertensive treatment approach: some thoughts on results of the International Primary Prevention Study in Hypertension. J Cardiovasc Pharmacol 1990; 16 Suppl. 7: S77–80

    PubMed  Google Scholar 

  106. Cipolle R, Scifert R, Neilan B, et al. Heparin kinetics: variables related to disposition and dosage. Clin Pharmacol Ther 1981; 29: 387–93

    Article  PubMed  CAS  Google Scholar 

  107. Rose J, Yurchak A, Meikle A, et al. Effect of smoking on prednisone, prednisolone, and dexamethasone. J Pharmacokinet Biopharm 1981; 9: 1–14

    PubMed  CAS  Google Scholar 

  108. Kanarkowski R, Tornatore K, Gardner M, et al. Pharmacokinetics of single and multiple doses of ethinyl estradiol and levongestrel in relation to smoking. Clin Pharmacol Ther 1988; 43: 23–31

    Article  PubMed  CAS  Google Scholar 

  109. Jick H. Smoking and clinical drug effects. Med Clin North Am 1974; 58: 1143–9

    PubMed  CAS  Google Scholar 

  110. Vaughan D, Beckett A, Robbie D. The influence of smoking on the intersubject variation in pentazocine elimination. Br J Clin Pharmacol 1976; 3: 279–83

    Article  PubMed  CAS  Google Scholar 

  111. Keeri-Szanto M, Pomeroy J. Atmospheric pollution and pentazocine disposition. Lancet 1971; I(7706): 947–9

    Article  Google Scholar 

  112. Sontheimer R. The management of refractory cutaneous lupus erythematosus. In: Klippel J, Dieppe D, editors. Rheumatology. London: Mosby, 1994: 6

    Google Scholar 

  113. Sontheimer R. Clinical manifestations of cutaneous lupus erythematosus. In: Wallace D, Hahn B, editors. Dubois’ lupus erythematosus. Baltimore (MD): Williams and Wilkins, 1994: 295

    Google Scholar 

  114. Raham P, Gladman D, Urowitz M. Smoking interferes with efficacy of antimalarial therapy in cutaneous lupus. J Rheumatol 1998; 25: 1716–9

    Google Scholar 

  115. British guidelines on the management of asthma. Thorax 2003; 58: i1-94

  116. Laitinen L, Laitinen A, Haahtela T. A comparative study of the effects of an inhaled corticosteroid, budesonide, and a beta-2 agonist, terbutaline, on airway inflammation in newly diagnosed asthma: a randomised, double-blind, parallel group, controlled study. J Allergy Clin Immunol 1992; 90: 32–42

    Article  PubMed  CAS  Google Scholar 

  117. Djukanovic R, Wilson J, Britten K, et al. The effects of inhaled corticosteroid on airway inflammation and the symptoms of asthma. Am Rev Respir Dis 1992; 145: 669–74

    PubMed  CAS  Google Scholar 

  118. Barnes P, Pedersen S, Busse W. Efficacy and safety of inhaled corticosteroids: new developments. Am J Respir Crit Care Med 1998; 157: S1–53

    PubMed  CAS  Google Scholar 

  119. Pedersen B, Dahl R, Karlstrom R, et al. Eosinophil and neutrophil activity in asthma in one-year trial with inhaled budesonide. Am J Respir Crit Care Med 1996; 153: 1519–29

    PubMed  CAS  Google Scholar 

  120. Chalmers G, MacLeod K, Little S, et al. Influence of cigarette smoking on inhaled corticosteroid treatment in mild asthma. Thorax 2002; 57: 1–5

    Article  Google Scholar 

  121. Szefler S, Boushey H, Pearlman D, et al. Time to onset of effect of fluticasone propionate in patients with asthma. J Allergy Clin Immunol 1999; 103: 780–8

    Article  PubMed  CAS  Google Scholar 

  122. Chaudhuri R, Livingston E, McMahon A, et al. Cigarette smoking impairs the therapeutic response to oral corticosteroids. Am J Respir Crit Care Med 2003; 168: 1308–11

    Article  PubMed  Google Scholar 

  123. Chalmers G, MacLeod K, Thomson L, et al. Smoking and airway inflammation in patients with mild asthma. Chest 2001; 120: 1917–22

    Article  PubMed  CAS  Google Scholar 

  124. Confalonieri C, Mainardi E, Delia Porta R, et al. Inhaled glucocorticoids reduce neutrophilic bronchial inflammation in patients with chronic obstructive pulmonary disease. Thorax 1998; 53: 583–5

    Article  PubMed  CAS  Google Scholar 

  125. Jensen E, Dahl R, Steffensen F. Bronchial reactivity to cigarette smoke: relation to lung function, respiratory symptoms, serum immunoglobulin-E, and blood eosinophil and leukocyte counts. Respir Med 2000; 94: 119–27

    Article  PubMed  CAS  Google Scholar 

  126. Thomson N, Chaudhuri R, Livingston E. Active cigarette smoking and asthma. Clin Exp Allergy 2003; 33: 1471–5

    Article  PubMed  CAS  Google Scholar 

  127. Green R, Brightling C, Woltmann G, et al. Analysis of induced sputum in adults with asthma: identification of subgroup with isolated sputum neutrophilia and poor response to inhaled corticosteroids. Thorax 2002; 57: 875–9

    Article  PubMed  CAS  Google Scholar 

  128. Ito K, Caramori G, Lim S, et al. Expression and activity of histone deacetylases in human asthmatic airways. Am J Respir Crit Care Med 2002; 166: 392–6

    Article  PubMed  Google Scholar 

  129. Ito K, Lim S, Caramori G, et al. Cigarette smoking reduces histone deacetylase 2 expression, enhances cytokine expression, and inhibits glucocorticoid actions in alveolar macrophages. FASEB J 2001; 15: 1110–2

    PubMed  CAS  Google Scholar 

  130. Bel E. Smoking: a neglected cause of glucocorticoid resistance in asthma. Am J Respir Crit Care Med 2003; 168: 1265–6

    Article  PubMed  Google Scholar 

  131. Hollenberg S, Weinberger C, Ong E, et al. Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature 1985; 318: 635–41

    Article  PubMed  CAS  Google Scholar 

  132. Bamberger C, Bamberger A, Castro M, et al. Glucocorticoid receptor β, a potential endogenous inhibitor of glucocorticoid actions in humans. J Clin Invest 1995; 95: 2435–11

    Article  PubMed  CAS  Google Scholar 

  133. Oakley R, Jewell C, Yuht M, et al. The dominant negative activity of the human glucocorticoid receptor β isoform. J Biol Chem 1999; 274: 27857–66

    Article  PubMed  CAS  Google Scholar 

  134. Oakley R, Sar M, Cidlowski J. The human glucocorticoid receptor β isoform: expression, biochemical properties, and putative function. J Biol Chem 1996; 271: 9550–9

    Article  PubMed  CAS  Google Scholar 

  135. Hecht K, Carlstedt-Duke J, Stierna P, et al. Evidence that the β-isoform of the human glucocorticoid receptor does not act as a physiologically significant receptor. J Biol Chem 1997; 272: 26659–64

    Article  PubMed  CAS  Google Scholar 

  136. Hamid Q, Wenzel S, Hauk P, et al. Increased glucocorticoid receptor β in the airway cells of glucocorticoid-insensitive asthma. Am J Respir Crit Care Med 1999; 159: 1600–4

    PubMed  CAS  Google Scholar 

  137. Leung D, Hamid Q, Vottero A, et al. Association of glucocorticoid insensitivity with increased expression of glucocorticoid receptor β. J Exp Med 1997; 186: 1567–74

    Article  PubMed  CAS  Google Scholar 

  138. Sousa A, Lane S, Cidlowski J, et al. Glucocorticoid resistance in asthma is associated with elevated in vivo expression of the glucocorticoid receptor β-isoform. J Allergy Clin Immunol 2000; 105: 943–50

    Article  PubMed  CAS  Google Scholar 

  139. Sher R, Leung D, Surs W, et al. Steroid resistant asthma: cellular mechanisms contributing to inadequate response to glucocorticoid therapy. J Clin Invest 1994; 93: 33–9

    Article  PubMed  CAS  Google Scholar 

  140. Leung D, Martin R, Szefler S, et al. Dysregulation of interleukin 4, interleukin 5, and interferon γ gene expression in steroid resistant asthma. J Exp Med 1995; 181: 33–40

    Article  PubMed  CAS  Google Scholar 

  141. Byron K, Varigos G, Wootton A. IL-4 production is increased in cigarette smokers. Clin Exp Immunol 1994; 95: 333–6

    Article  PubMed  CAS  Google Scholar 

  142. Strickland I, Kisich K, Hauk P, et al. High constitutive glucocorticoid receptor β in human neutrophils enables them to reduce their spontaneous rate of cell death in response to corticosteroids. J Exp Med 2001; 193: 585–93

    Article  PubMed  CAS  Google Scholar 

  143. Churg A, Dai J, Changshi X, et al. Tumour necrosis factor-α is central to acute cigarette smoke-induced inflammation and connective tissue breakdown. Am J Respir Crit Care Med 2002; 166: 849–54

    Article  PubMed  Google Scholar 

  144. Webster J, Oakley R, Jewell C, et al. Proinflammatory cytokines regulate human glucocorticoid receptor gene expression and lead to the accumulation of the dominant negative β isoform: a mechanism for the generation of glucocorticoid resistance. Proc Natl Acad Sci U S A 2001; 98: 6865–70

    Article  PubMed  CAS  Google Scholar 

  145. Hunt S, Jusko W, Yurchak A. Effect of smoking on theophylline disposition. Clin Pharmacol Ther 1976; 19: 546–51

    PubMed  CAS  Google Scholar 

  146. Powell J, Thiercelin J, Vozeh S, et al. The influence of cigarette smoking and sex on theophylline disposition. Am Rev Respir Dis 1977; 116: 17–23

    PubMed  CAS  Google Scholar 

  147. Kurisu Matsunga S, Plezia P, Karol M, et al. Effects of passive smoking on theophylline clearance. Clin Pharmacol Ther 1989; 46: 399–407

    Article  Google Scholar 

  148. Casto D, Schnapf B, Clotz M. Lack of effect of short-term passive smoking on the metabolic disposition of theophylline. Eur J Clin Pharmacol 1990; 39: 399–402

    Article  PubMed  CAS  Google Scholar 

  149. Mayo P. Effect of passive smoking on theophylline clearance in children. Ther Drug Monit 2001; 23: 503–5

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank NHS Education for Scotland, the Chief Scientist’s Office for Scotland, Chest Heart & Stroke Scotland and the National Asthma Campaign for their support of the work carried out in this area by the authors.

Conflicts of interest: Eric Livingston has been reimbursed by AstraZeneca (AZ) and GlaxoSmithKline (GSK), the manufacturers of budesonide, and beclomethasone and fluticasone, respectively, for attending conferences.

George W. Chalmers has been reimbursed by GSK, the manufacturers of fluticasone for attending conferences.

Neil C. Thomson has been reimbursed by AZ, GSK and Schering Plough, the manufacturers of budesonide, beclomethasone and fluticasone, and mometasone, respectively, for attending several conferences and has acted as a consultant to GSK and Altana. His department has received research funds for clinical trials from AZ, GSK, Novartis and Merck.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George W. Chalmers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Livingston, E., Thomson, N.C. & Chalmers, G.W. Impact of Smoking on Asthma Therapy. Drugs 65, 1521–1536 (2005). https://doi.org/10.2165/00003495-200565110-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200565110-00005

Keywords

Navigation