Skip to main content
Log in

Narrow Versus Broad Spectrum Antibacterials

Factors in the Selection of Pneumococcal Resistance to β- Lactams

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Streptococus pneumoniae represents an interesting model to discuss the relative impact of broad versus narrow spectrum antibacterials as potential selectors for resistance. Indeed, this pathogen is responsible for potentially severe infections in the community, and has a great capacity for acquisition of resistance to antibacterial agents. It has been the focus of many studies to elucidate some unique aspects of molecular biology, including the adaptive mechanisms responsible for emergence and spread of multiresistance.

In the past, the use of narrow spectrum agents was recommended in order to try to reduce the risk of selection of resistance. This concept is nowadays somewhat obsolete for several reasons. S. pneumoniae is able to acquire resistance to antibacterials belonging to different families of drugs through different molecular mechanisms. Thus, selection of multiresistant pneumococci can result from exposure to very different agents, including narrow spectrum as well as broad spectrum agents. In vitro studies have shown a different potential for selection of resistance among the β-lactam agents. Furthermore, several studies have more or less directly established a close relationship between the level of antibacterial use and the rate of selection of resistance. In addition to the overall amount of antibacterials prescribed in the community, several other factors have been shown to influence the rate of selection of resistance, including the use of doses that are too low, the length of therapy and the duration of bacterial exposure to long-acting agents compared to drugs with short half-lives.

Therefore, there are three main ways to control selection and spread of resistant strains: by (i) reducing the amount of antibacterials used; (ii) using optimal dosages (avoiding underdosing) and treatments of short duration; and (iii) reducing the risk of transmission among young children attending daycare centres or kindergartens. In order to help physicians reduce the number of unnecessary prescriptions, it is important to develop rapid tests to recognise the bacterial origin of a febrile illness and even more important to detect resistance to antibacterials. However, apart from rapid diagnostic tests for streptococcal pharyngitis, those tests are not currently available.

As a consequence, currently, the debate around narrow versus broad spectrum antibacterials remains a false debate. Physicians should use broad spectrum agents in many instances of upper or lower respiratory tract infection, taking into consideration the probable pathogens and the risk of (multi)resistance to antibacterials. Once rapid diagnostic are available in community practice, allowing a precise diagnosis of the offending agent and its susceptibility profile, physicians will be able to add to their current criteria the selective potential for resistance of the antibacterials that appear to be active in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I

Similar content being viewed by others

References

  1. Austrian RS. Pneumococcus and the Brooklyn connection. Am J Med 1999; 107(1A): 2S–6S

    Article  PubMed  CAS  Google Scholar 

  2. Tomasz A. New faces of an old pathogen: emergence and spread of multidrug-resistant streptococcus pneumoniae. Am J Med 1999; 107(1A): 55S–62S

    Article  PubMed  CAS  Google Scholar 

  3. Turner PJ, Edwards JR. A compilation of studies assessing the in vitro activity of meropenem and comparators in 84 laboratories throughout Europe. Clin Microbiol Infect 1997; (4): S32-50

  4. Chen DK, McGeer A, de Azavedo JC, et al. Decreased susceptibility of Streptococcus pneumoniae to fluoroquinolones in Canada. N Engl J Med 1999; 341: 233–9

    Article  PubMed  CAS  Google Scholar 

  5. Linares J, de la Campa A, Pallares R. Fluoroquinolone resistance in Streptococcus pneumoniae. N Engl J Med 1999; 341: 1546–7

    PubMed  CAS  Google Scholar 

  6. Austin DJ, Kristinsson KG, Anderson RM. The relationship between the volume of antimicrobial consumption in human communities and the frequency of resistance. Proc Natl Acad Sci U S A 1999: 96(3); 1152–1156

    Article  PubMed  CAS  Google Scholar 

  7. Davies T, Dewasse BE, Jacobs MR, et al. In vitro development of resistance to telithromycin (HMR 3647), four macrolides, clindamycin and pristinamycin in Streptococcus pneumoniae. Antimicrob Agents Chemother 2000; 44(2): 414–7

    Article  PubMed  CAS  Google Scholar 

  8. Pankuch GA, Jueneman SA, Davies TD, et al. In vitro selection of resistance to four β-lactams and azithromycin in Streptococcus pneumoniae. Antimicrob Agents Chemother 1998; 42(11): 2914–8

    PubMed  CAS  Google Scholar 

  9. Guillemot D, Carbon C, Balkau B, et al. Low dosage and long treatment duration of β-lactam. Risk factors for carriage of penicillin-resistant Streptococcus pneumoniae. JAMA 1998; 279(5): 365–70

    Article  PubMed  CAS  Google Scholar 

  10. Baquero F, Negri MC, Morosini MI, et al. The antibiotic selective process: concentration-specific amplification of low-level resistant populations. Ciba Found Symp 1997; 207: 93–105

    PubMed  CAS  Google Scholar 

  11. Arason VA, Kristinsson KG, Sigurdsson JA, et al. Do antimicrobials increase the carriage rate of penicillin resistant pneumococci in children?. Cross sectional prevalence study. BMJ 1996; 313: 387–91

    Article  PubMed  CAS  Google Scholar 

  12. Radetsky M, Istre GR, Johansen TL, et al. Multiply resistant pneumococcus causing meningitis: its epidemiology within a day care center. Lancet 1981; II(8250): 771–3

    Article  Google Scholar 

  13. Pallares R. Gudiol F, Linares J, et al. Risk factors and response to antibiotic therapy in adults with bacteremic pneumonia caused by penicillin-resistant pneumococci. N Engl J Med 1987; 317: 18–22

    Article  PubMed  CAS  Google Scholar 

  14. Reichler MR, Allphin AA, Breiman RF, et al. The spread of multiply resistant Streptococcus pneumoniae at a day care center in Ohio. J Infect Dis 1992; 166: 1346–53

    Article  PubMed  CAS  Google Scholar 

  15. Block SL, Harrison CJ, Hedrick JA, et al. Penicillin-resistant Streptococcus pneumoniae in acute otitis media: risk factors, susceptibility patterns and antimicrobial management. Pediatr Infect Dis J 1995; 14: 751–9

    Article  PubMed  CAS  Google Scholar 

  16. Duchin JS, Breiman RF, Diamond A, et al. High prevalence of multi-drug-resistant Streptococcus pneumoniae among children in a rural Kentucky community. Pediatr Infect Dis J 1995; 19: 745–50

    Google Scholar 

  17. Bćdos JP, Chevret S, Chastang C, et al. Epidemiological features of and risk factors for infection by Streptococcus pneumoniae strains with diminished susceptibility to penicillin. Clin Infect Dis 1996; 22: 63–72

    Article  Google Scholar 

  18. Brook I, Gober AE. Prophylaxis with amoxicillin or sulfisoxazole for otitis media: Effect on the recovery of penicillin-resistant bacteria from children. Clin Infect Dis 1996; 22: 143–5

    Article  PubMed  CAS  Google Scholar 

  19. Fairchok MP, Ashton WS, Fischer GW. Carriage of penicillin-resistant pneumococci in a military population in Washington DC: Risk factors and correlation with clinical isolates. Clin Infect Dis 1996; 22: 966–72

    Article  PubMed  CAS  Google Scholar 

  20. Meynard JL, Barbut F, Blum L, et al. Risk factors for isolation of Streptococcus pneumoniae with decreased susceptibility to penicillin G from patients infected with human immunodeficiency virus. Clin Infect Dis 1996; 22: 437–40

    Article  PubMed  CAS  Google Scholar 

  21. Melander E, Mölstad K, Persson HB, et al. Previous antibiotic consumption and other risk factors for carriage of penicillin-resistant Streptococcus pneumoniae in children. Eur J Clin Microbiol Infect Dis 1998; 17: 834–8

    Article  PubMed  CAS  Google Scholar 

  22. Yagupsky P, Porat N, Fraser D, et al. Acquisition, carriage and transmission of pneumococci with decreased antibiotic susceptibility in young children attending a day care facility in southern Israel. J Infect Dis 1998; 177: 1003–12

    Article  PubMed  CAS  Google Scholar 

  23. Craig AS, Erwin P, Scaffner W, et al. Carriage of multidrug-resistant Streptococcus pneumoniae and impact of chemopro-phylaxis during an outbreak of meningitis at a day care center. Clin Infect Dis 1999; 29: 1254–64

    Article  Google Scholar 

  24. Kellner JD, Ford-Jones EL, Members of the Toronto Child Care Study Group. Streptococcus pneumoniae carriage in children attending 59 child care centers. Arch Pediatr Adolesc Med 1999; 153:495–502

    PubMed  CAS  Google Scholar 

  25. McGowan JEG. Antimicrobial resistance in hospital organisms and its relation to antibiotic use. Rev Infect Dis 1983;5: 1033–9

    Article  PubMed  Google Scholar 

  26. Ekdahl K, Ahlinder I, Hansson HB, et al. Duration of nasopharyngeal carriage of penicillin-resistant Streptococcus pneumoniae: Experiences from the South Swedish Pneumococcal Intervention Project. Clin Infect Dis 1997; 25: 1113–7

    Article  PubMed  CAS  Google Scholar 

  27. Austin DJ, Kristinsson KG, Anderson RM. The relationship between the volume of antimicrobial consumption in human community and the frequency of resistance. Proc Natl Acad Sci U S A 1999;96(3): 1152–6

    Article  PubMed  CAS  Google Scholar 

  28. Isturiz R, Carbon C. Antibiotic use in developing countries. Infect Control Hosp Epidemiol 2000; 21(6): 394–7

    Article  PubMed  CAS  Google Scholar 

  29. Baquero F, Martinez-Beltran J, Loza E. A review of antibiotic resistance patterns of Streptococcus pneumoniae in Europe. J Antimicrob Chemother 1991; 28 Suppl. C: 31–8

    Article  PubMed  CAS  Google Scholar 

  30. Pradier C, Dunais B, Carsenti-Etesse H, et al. Eur J Clin Microbiol Infect Dis 1997; 16(9): 644–7

    Article  PubMed  CAS  Google Scholar 

  31. Baquero F. Evolving resistance patterns of Streptococcus pneumoniae: A link with long acting macrolide consumption? J Chemother 1999; 11 Suppl. 1: 35–43

    PubMed  CAS  Google Scholar 

  32. Vilhelmsson SE, Tomasz A, Kristinsson KG. Molecular evolution in a multidrug-resistant lineage of Streptococcus pneumoniae: emergence of strains belonging to serotype 6B Icelandic clone that lost antibiotic resistance traits. J Clin Microbiol 2000; 38(4): 1375–81

    PubMed  CAS  Google Scholar 

  33. Seppälä H, Klaukka T, Vuopio Varkila J, et al. The effect of changes in the consumption of macrolide antibiotics on erythromycin resistance in Group A streptococci. N Engl J Med 1997; 337(7): 441–6

    Article  PubMed  Google Scholar 

  34. Kristinsson KG, Hjalmarsdottir MA, Gudnason T. Continued decline in the incidence of penicillin non-susceptible pneumococci in Iceland [abstract no. C022]. 38th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC). San Diego: American Society of Microbiology, 1998

    Google Scholar 

  35. Garcia-Bustos J, Tomasz A. A biological price of antibiotic resistance: major changes in the peptidoglycan structure of penicillin resistant pneumococci. Proc Natl Acad Sci U S A 1990; 87: 5414–9

    Article  Google Scholar 

  36. Azoulay-Dupuis E, Rieux V, Muffat-Joly J, et al. Relationships between capsular type, penicillin susceptibility, and mouse virulence of human Streptococcus pneumoniae isolates in mice. Antimicrob Agents Chemother 2000; 44(6): 1575–7

    Article  PubMed  CAS  Google Scholar 

  37. Isturiz R, Azoulay-Dupuis E, Mohler J, et al. The cost of resistance: can penicillin resistant strains of Streptococcus pneumoniae cause lethal murine pneumonia?. [abstract no. 452]. 40th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC). Toronto, Canada: American Society of Microbiology, 2000

    Google Scholar 

  38. Björkman J, Hugues D, Andersson DI. Virulence of antibiotic resistant Salmonella typhimurium. Proc Natl Acad Sci U S A 1998; 95: 3949–53

    Article  PubMed  Google Scholar 

  39. Einarsson S, Kristjansson M, Kristinsson KG, et al. Pneumonia caused by penicillin-nonsusceptible and penicillin-susceptible pneumococci in adults: a case control study. Scand J Infect Dis 1998; 30: 253–6

    Article  PubMed  CAS  Google Scholar 

  40. Feikin DR, Schuchat A, Kolczac M, et al. Mortality from invasive pneumococcal pneumonia in the era of antibiotic resistance, 1995–1997. Am J Public Health 2000; 90(2): 223–9

    Article  PubMed  CAS  Google Scholar 

  41. Matlay JP, Hofmann J, Cetron MS, et al. Impact of penicillin susceptibility on medical outcomes for adult patients with bacteremic pneumococcal pneumonia. Clin Infect Dis 2000; 30: 520–8

    Article  Google Scholar 

  42. Negri MC, Morosini MI, Loza E, et al. In vitro selective antibiotic concentrations of beta-lactams for penicillin-resistant Streptococcus pneumoniae. Antimicrob Agents Chemother 1994; 38(1): 122–5

    Article  PubMed  CAS  Google Scholar 

  43. Cohen R, Bingen E, Varon E, et al. Change in nasopharyngeal carriage of Streptococcus pneumoniae resulting from antibiotic therapy for acute otitis media in children. Pediatr Infect Dis J 1997; 16(6): 555–60

    Article  PubMed  CAS  Google Scholar 

  44. Dagan R, Yagupsky P, Goldbart A, et al. Increasing prevalence of penicillin-resistant pneumococcal infections in children in southern Israel: Implications for future immunization policies. Pediatr Infect Dis J 1994; 13: 782–6

    Article  PubMed  CAS  Google Scholar 

  45. Hausdorff WP, Bryant J, Paradiso PR, et al. Which pneumococcal serogroup cause most invasive disease: Implications for conjugate vaccine formulation and use. Clin Infect Dis 2000; 30(Pt I): 100–21

    Article  PubMed  CAS  Google Scholar 

  46. Hausdorff WP, Bryant J, Kloek C, et al. The contribution of specific pneumococcal serogroups to different disease manifestations: Implications for conjugate vaccine formulation and use. Clin Infect Dis 2000; 30 (Pt II) 30: 122–40

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raul Isturiz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carbon, C., Isturiz, R. Narrow Versus Broad Spectrum Antibacterials. Drugs 62, 1289–1294 (2002). https://doi.org/10.2165/00003495-200262090-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200262090-00001

Keywords

Navigation