Skip to main content
Log in

Liposomes

Opportunities in Drug Delivery

  • Published:
Drugs Aims and scope Submit manuscript

Summary

Liposomal drug delivery systems markedly alter the biodistribution of their associated drugs by delaying drug clearance, retarding drug metabolism, decreasing the volume of distribution, and shifting the distribution in favour of diseased tissues with increased capillary permeability. This increases the therapeutic indices of the associated drugs, by increasing the drug concentration in solid tumours and regions of infection, and reducing the drug concentration in normal tissues. Three liposomal formulations have been approved for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 1965; 13: 238–52

    Article  PubMed  CAS  Google Scholar 

  2. Mayer LD, Bally MB, Cullis PR. Uptake of adriamycin into large unilamellar vesicles in response to a pH gradient. Biochim Biophys Acta 1986; 857: 123–6

    Article  PubMed  CAS  Google Scholar 

  3. Haran G, Cohen R, Bar LK, et al. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic week bases. Biochim Biophys Acta 1993; 1151: 201–315

    Article  PubMed  CAS  Google Scholar 

  4. Ceh B, Winterhalter M, Frederik PM, et al. Stealth® liposomes: from theory to product. Adv Drug Deliv Rev 1997; 24: 165–77

    Article  CAS  Google Scholar 

  5. Hwang KJ. Liposome pharmacokinetics. In: Ostro MJ, editor. Liposomes: from biophysics to therapeutics. New York: Marcel Dekker, 1987: 109–56

    Google Scholar 

  6. Allen TM, Hansen CB, De Menezes DEL. Pharmacokinetics of long circulating liposomes. Adv Drug Deliv Rev 1995; 16: 267–84

    Article  CAS  Google Scholar 

  7. Gabizon A, Catane R, Uziely B, et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 1994; 54: 987–92

    PubMed  CAS  Google Scholar 

  8. Alberts DS, Bachur NR, Holtzman JL. The pharmacokinetics of daunomycin in man. Clin Pharmacol Ther 1971; 12: 96–104

    PubMed  CAS  Google Scholar 

  9. Northfelt DW, Martin FJ, Working P, et al. Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumour localization, and safety in patients with AIDS-related Kaposi’s sarcoma. J Clin Pharmacol 1996; 36: 55–63

    PubMed  CAS  Google Scholar 

  10. Gill PS, Espina BM, Muggia F, et al. Phase I/II clinical and pharmacokinetic evaluation of liposomal daunorubicin. J Clin Oncol 1995; 13: 996–1003

    PubMed  CAS  Google Scholar 

  11. Cowens JW, Creaven PJ, Greco WR, et al. Initial clinical (phase I) trial of TLC D-99 (doxorubicin encapsulated in liposomes). Cancer Res 1993; 53: 2796–802

    PubMed  CAS  Google Scholar 

  12. Klibanov AL, Maruyama K, Torchilin VP, et al. Amphipathic polyethylene glycols effectively prolong the circulation time of liposomes. FEBS Lett 1990; 268: 235–7

    Article  PubMed  CAS  Google Scholar 

  13. Woodle MC, Lasic DD. Sterically stabilized liposomes. Biochim Biophys Acta 1992; 1113: 171–99

    Article  PubMed  CAS  Google Scholar 

  14. Allen TM. The use of glycolipids and hydrophilic polymers in avoiding rapid uptake of liposomes by the mononuclear phagocyte system. Adv Drug Deliv Rev 1994; 13: 285–309

    Article  CAS  Google Scholar 

  15. Blume G, Cevc G. Liposomes for the sustained drug release in vivo. Biochim Biophys Acta 1990; 1029: 91–7

    Article  PubMed  CAS  Google Scholar 

  16. Senior J, Delgado C, Fisher D, et al. Influence of surface hydrophilicity of liposomes on their interaction with plasma protein and clearance from the circulation: studies with poly(ethylene glycol)-coated vesicles. Biochim Biophys Acta 1991; 1062: 77–82

    Article  PubMed  CAS  Google Scholar 

  17. Allen TM, Hansen C. Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim Biophys Acta 1991; 1068: 133–41

    Article  PubMed  CAS  Google Scholar 

  18. Papahadjopoulos D, Allen TM, Gabizon A, et al. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci USA 1991; 88: 11460–4

    Article  PubMed  CAS  Google Scholar 

  19. Senior J, Crawley JC, Gregoriadis G. Tissue distribution of liposomes exhibiting long half-lives in the circulation after intravenous injection. Biochim Biophys Acta 1985; 839: 1–8

    Article  PubMed  CAS  Google Scholar 

  20. Alving CR, Wassef NM. Complement-dependent phagocytosis of liposomes: suppression by ‘Stealth’ lipids. J Liposome Res 1992; 2: 383–95

    Article  CAS  Google Scholar 

  21. Aragnol D, Leserman L. Immune clearance of liposomes inhibited by an anti-Fc receptor antibody in vivo. Proc Natl Acad Sci USA 1986; 83: 2699–703

    Article  PubMed  CAS  Google Scholar 

  22. Chonn A, Semple SC, Cullis PR. Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes. J Biol Chem 1992; 267: 18759–65

    PubMed  CAS  Google Scholar 

  23. Lasic DD, Martin FJ, Gabizon A, et al. Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times. Biochim Biophys Acta 1991; 1070: 187–92

    Article  PubMed  CAS  Google Scholar 

  24. Torchilin VP, Omelyanenko VG, Papisov MI, et al. Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer coated liposome longevity. Biochim Biophys Acta 1995; 1195: 11–20

    Google Scholar 

  25. Silvius JR, Zuckermann M J. Interbilayer transfer of phospholipid-anchored macromolecules via monomer diffusion. Biochemistry 1993; 32: 3153–61

    Article  PubMed  CAS  Google Scholar 

  26. Forssen EA, Male-Brune R, Adler-Moore JP, et al. Fluorescence imaging studies for the disposition of daunorubicin liposomes (DaunoXome) with tumor tissue. Cancer Res 1996; 56: 2066–75

    PubMed  CAS  Google Scholar 

  27. Vaage J, Barberá-Guillem E, Abra R, et al. Tissue distribution and therapeutic effect on intravenous free or encapsulated liposomal doxorubicin on human prostate carcinoma xenografts. Cancer 1994; 73: 1478–84

    Article  PubMed  CAS  Google Scholar 

  28. Vaage J, Donovan D, Uster P, et al. Tumour uptake of doxorubicin in polyethylene glycol-coated liposomes and therapeutic effect against a xenografted human pancreatic carcinoma. Br J Cancer 1997; 75: 482–6

    Article  PubMed  CAS  Google Scholar 

  29. Dvorak HF, Nagy JA, Dvorak JT, et al. Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol 1988; 133: 95–109

    PubMed  CAS  Google Scholar 

  30. Yuan F, Leunig M, Huang SK, et al. Microvascular permeability and interstitial penetration of sterically stabilized (Stealth) liposomes in a human tumor xenograft. Cancer Res 1994; 54: 3352–6

    PubMed  CAS  Google Scholar 

  31. Wu NZ, Da D, Rudoll TL, et al. Increased microvascular permeability contributes to preferential accumulation of Stealth liposomes in tumour tissue. Cancer Res 1993; 53: 3765–70

    PubMed  CAS  Google Scholar 

  32. Uziely B, Jeffers S, Isacson R, et al. Liposomal doxorubicin: antitumor activity and unique toxicities during two complementary phase I studies. J Clin Oncol 1995; 13: 1777–85

    PubMed  CAS  Google Scholar 

  33. Bogner JR, Kronawitter U, Rolinski B, et al. Liposomal doxorubicin in the treatment of advanced AIDS-related Kaposi’s sarcoma. J Acquir Immune Defic Syndr 1994; 7: 463–8

    PubMed  CAS  Google Scholar 

  34. Goebel F-D, Goldstein D, Goos M, et al. Efficacy and safety of Stealth® lipsomal doxorubicin in AIDS-related Kaposi’s sarcoma. Br J Cancer 1996; 73: 989–94

    Article  PubMed  CAS  Google Scholar 

  35. Harrison M, Tomlinson D, Stewart S. Liposomal-entrapped doxorubicin: an active agent in AIDS-related Kaposi’s sarcoma. J Clin Oncol 1995; 13: 914–20

    PubMed  CAS  Google Scholar 

  36. Horowitz AT, Barenholz Y, Gabizon AA. In vitro cytotoxicity of liposome-encapsulated doxorubicin: dependence on liposome composition and drug release. Biochim Biophys Acta 1992; 1109: 203–9

    Article  PubMed  CAS  Google Scholar 

  37. Siegal T, Horowitz A, Gabizon A. Doxorubicin encapsulated in sterically stabilized liposomes for the treatment of a brain tumor model: biodistribution and therapeutic efficacy. J Neurosurg 1995; 83: 1029–37

    Article  PubMed  CAS  Google Scholar 

  38. Bogner JR, Goebel F-D. Efficacy of Dox-SL (Stealth® liposomal doxorubicin) in the treatment of advanced AIDS-related Kaposi’s sarcoma. In: Lasic D, Martin F, editors. Boca Raton (FL): CRC Press, 1995: 267–81

  39. Ranson M, O’Bryne K, Carmichael J, et al. Phase II dose-finding trial of DOX-SL (Stealth® liposomal doxorubicin HCl) in the treatment of advanced breast cancer. Proc Am Soc Clin Oncol 1996; 15: 124

    Google Scholar 

  40. Muggia F, Hainsworth J, Jeffers S, et al. Liposomal doxorubicin (Doxil) is active against refractory ovarian cancer. Proc Am Soc Clin Oncol 1996; 15: 287

    Google Scholar 

  41. Muggia F, Hainsworth JD, Jeffers S, et al. Phase II study of liposomal doxorubicin in refractory ovarian cancer: antitumor activity and toxicity modification by liposomal encapsulation. J Clin Oncol 1997; 15: 987–93

    PubMed  CAS  Google Scholar 

  42. Vail DM, Kravis LD, Cooley AJ, et al. Preclinical trial of doxorubicin entrapped in sterically stabilized liposomes in dogs with spontaneously arising malignant tumors. Cancer Chemother Pharmacol 1997; 39: 410–6

    Article  PubMed  CAS  Google Scholar 

  43. Eckardt JR, Campbell E, Burries HA, et al. A phase II trial of DaunoXome, liposome encapsulated daunorubicin, in patients with metastatic adenocarcinoma of the colon. Am J Clin Oncol Cancer Clin Trials 1994; 17: 498–501

    CAS  Google Scholar 

  44. Tollemar J, Hockersted K, Ericzon BC, et al. Liposomal amphotericin B prevents invasive fungal infections in liver transplant recipients: a randomized, placebo controlled study. Transplantation 1995; 59: 45–50

    Article  PubMed  CAS  Google Scholar 

  45. Heinemann V, Kahny B, Debus A, et al. Pharmacokinetics of liposomal amphotericin B (AmBisome) versus other lipid based formulations. Bone Marrow Transplant 1994; 14: S8–9

    PubMed  Google Scholar 

  46. Russo R, Nigro LC, Minniti S, et al. Visceral leishmaniasis in HIV infected patients: treatment with high dose liposomal amphotericin B (AmBisome). J Infect 1996; 32: 133–7

    Article  PubMed  CAS  Google Scholar 

  47. Bakker-Woudenberg IAJM, Lokerse AF, ten Kate MT, et al. Enhanced localization of liposomes with prolonged blood circulation time in infected lung tissue. Biochim Biophys Acta 1992; 1138: 318–26

    Article  PubMed  CAS  Google Scholar 

  48. Bakker-Woudenberg IAJM, Lokerse AF, ten Kate MT, et al. Liposomes with prolonged blood circulation and selective localization in Klebsiella pneumoniae-infected lung tissue. J Infect Dis 1993; 168: 164–71

    Article  PubMed  CAS  Google Scholar 

  49. de Marie S, Janknegt R, Bakker-Woudenberg IAJM. Clinical use of liposomal and lipid-complexed amphotericin B. Antimicrob Chemother 1994; 33: 907–16

    Article  Google Scholar 

  50. Vertut-Croquin A, Bolard J, Chabbert M, et al. Differences in the interaction of the polyene antibiotic amphotericin B with cholesterol- or ergosterol-containing phospholipid vesicles. A circular dichroism and permeability study. Biochemistry 1983; 22: 2939–44

    Article  PubMed  CAS  Google Scholar 

  51. Mehta RT, Lopez-Berestein G, Hopfer R, et al. Liposomal amphotericin B is toxic to fungal cells but not to mammalian cells. Biochim Biophys Acta 1984; 770: 230–4

    Article  PubMed  CAS  Google Scholar 

  52. Embree L, Gelmon KA, Lohr A, et al. Chromatographic analysis and pharmacokinetics of liposome-encapsulated doxorubicin in non-small-cell lung cancer patients. J Pharmaceut Sci 1993; 82: 627–34

    Article  CAS  Google Scholar 

  53. Fidler IJ, Kleinerman ES. Clinical application of phospholipid liposomes containing macrophage activators for therapy of cancer metastasis. Adv Drug Deliv Rev 1994; 13: 325–40

    Article  Google Scholar 

  54. Abraham E, Park YC, Covington P, et al. Liposomal prostaglandin E(l) in acute respiratory distress syndrome: a placebo controlled, randomized, double blind, multicenter clinical trial. Crit Care Med 1996; 24: 10–5

    Article  PubMed  CAS  Google Scholar 

  55. Mayer LD, Gelmon K, Cullis PR, et al. Preclinical and clinical studies with liposomal vincristine. In: Hirota S, editor. Progress in drug delivery. Vol. 4. Tokyo: Biomedical Research Foundation, 1995: 151–61

    Google Scholar 

  56. Allen TM, Moase EH. Therapeutic opportunities for targeted liposomal drug delivery. Adv Drug Deliv Rev 1996; 21: 117–33

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, T.M. Liposomes. Drugs 54 (Suppl 4), 8–14 (1997). https://doi.org/10.2165/00003495-199700544-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199700544-00004

Keywords

Navigation