Skip to main content
Log in

Extrahepatic Cell Membrane Lipid Abnormalities and Cellular Dysfunction in Liver Disease

  • Published:
Drugs Aims and scope Submit manuscript

Summary

Liver disease is associated with characteristic changes in the lipid composition of the surface coat of plasma lipoprotein particles. Cholesterol and lecithin molecules accumulate as hepatic secretion of lecithin-cholesterol acyltransferase decreases, and the arachidonate content, the precursor for eicosanoid production, is also reduced. By exchange and equilibration processes, such abnormal circulating lipoproteins should tend to induce corresponding changes in cell membrane lipid composition; studies in both human and experimental liver disease confirm that this does occur and that it is widespread. The correct functioning of membrane proteins, which serve as receptors or are responsible for enzymatic and transport processes, is most commonly dependent on the fluidity of their lipid bilayer matrix. Because cholesterol enrichment of biomembranes reduces bulk lipid fluidity, it can be predicted that extrahepatic membrane dysfunction might be a general feature of severe liver disease. This concept is supported by increasing experimental evidence and, as a consequence, it is proposed that many of the cellular disturbances and metabolic abnormalities accompanying hepatic disease result from, or are exacerbated by, lipoprotein-induced changes in membrane lipid composition and function. Importantly, this mechanism also suggests that drugs which can fluidise membranes, such as S-adenosyl-L-methionine (SAMe), might help ameliorate cellular dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azzi A, Drahota Z, Papa S (Eds) In Molecular basis of membrane-associated diseases, Springer-Verlag, Berlin, 1989

    Google Scholar 

  • Bergelson LD, Baruskov LI. Topological asymmetry of phospholipids in membranes. Science 197: 224–230, 1977

    Article  PubMed  CAS  Google Scholar 

  • Bloom D, McGalden RA, Rosendorff C. Effects of jaundiced plasma on vascular sensitivity to noradrenaline. Kidney International 8: 149–157, 1975

    Article  PubMed  CAS  Google Scholar 

  • Borochov H, Zahler P, Wilbrandt W, Shinitzky M. The effect of phosphatidylcholine to sphingomyelin mole ratio on the dynamic properties of sheep erythrocyte membrane. Biochimica et Biophysica Acta 470: 382–388, 1977

    Article  CAS  Google Scholar 

  • Brasitus TA, Dahiya R, Dudeja PK, Bissonnette BM. Cholesterol modulates alkaline phosphatase activity of rat intestinal microvillus membranes. Journal of Biological Chemistry 263: 8592–8597, 1988

    PubMed  CAS  Google Scholar 

  • Bruckdorfer KR, Graham J M. The exchange of cholesterol and phospholipids between cell membranes and lipoproteins. In Chapman & Wallach (Eds) Biological membranes, Vol. 3, pp. 103–151, Academic Press, New York, 1976

    Google Scholar 

  • Cabre E, Periago JL, Abad-Lacruz A, Gil A, Gonzalez-Huix F, et al. Polyunsaturated fatty acid deficiency in liver cirrhosis: its relation to associated protein-energy malnutrition (preliminary report). American Journal of Gastroenterology 83: 712–717, 1988

    PubMed  CAS  Google Scholar 

  • Calandra S, Martin MJ, McIntyre N. Plasma lecithin-cholesterol acyltransferase activity in liver disease. European Journal of Clinical Investigation 1: 352–360, 1971

    Article  PubMed  CAS  Google Scholar 

  • Chap HJ, Zwaal RFA, Van Deenen LLM. Action of highly purified phospholipases on blood platelets. Evidence for an asymmetric distribution of phospholipids in the surface membrane. Biochimica et Biophysica Acta 467: 146–164, 1977

    Article  PubMed  CAS  Google Scholar 

  • Chapman D. Recent physical studies of phospholipids and natural membranes. In Chapman (Ed.) Biological membranes. Physical fact and function, pp. 125–202, Academic Press, London, 1968

    Google Scholar 

  • Chauhan VPS, Sikka SC, Kalra VK. Phospholipid methylation of kidney cortex brush border membranes. Effect on fluidity and transport. Biochimica et Biophysica Acta 688: 357–368, 1982

    Article  PubMed  CAS  Google Scholar 

  • Collins JR, Lacy WW, Stiel JN, Crofford OB. Glucose intolerance and insulin resistance in patients with liver disease. Archives of Internal Medicine 126: 608–614, 1970

    Article  PubMed  CAS  Google Scholar 

  • Cooper RA. Anemia with spur cells: a red cell defect acquired in serum and modified in the circulation. Journal of Clinical Investigation 48: 1820–1831, 1969

    Article  PubMed  CAS  Google Scholar 

  • Cooper RA. Lipids of human red cell membranes: normal composition and variability in disease. Seminars in Hematology 7: 296–321, 1970

    PubMed  CAS  Google Scholar 

  • Cooper RA. Abnormalities of cell membrane fluidity in the pathogenesis of disease. New England Journal of Medicine 297: 371–377, 1977

    Article  PubMed  CAS  Google Scholar 

  • Cooper RA. Hemolytic syndromes and red cell membrane abnormalities in liver disease. Seminars in Hematology 17: 103–112, 1980

    PubMed  CAS  Google Scholar 

  • Cooper RA, Diloy-Puray M, Lando P, Greenberg MS. An analysis of lipoproteins, bile acids, and red cell membranes associated with target cells and spur cells in patients with liver disease. Journal of Clinical Investigation 51: 3182–3192, 1972

    Article  PubMed  CAS  Google Scholar 

  • Day RC, Harry DS, McIntyre N. Plasma lipoproteins and the liver. In Wright et al. (Eds) Liver and biliary disease. Pathophysiology, diagnosis, management, pp. 63–82, Saunders, London, 1979

    Google Scholar 

  • Dean RT. Lysosomes and membrane recycling. Biochemical Journal 168: 603–605, 1977

    PubMed  CAS  Google Scholar 

  • Filho MC, Gillett MPT. Changes in microsome lipid composition of rat tissues after bile duct ligation. Biochemical Society Transactions 14: 730–731, 1986

    Google Scholar 

  • Floren C-H, Chen C-H, Franzen J, Albers JJ. Lecithin-cholesterol acyltransferase in liver disease. Scandinavian Journal of Laboratory and Clinical Investigation 47: 613–617, 1987

    CAS  Google Scholar 

  • Ginsburg BH, Brown TJ, Ido S, Spector AA. Effect of the membrane lipid environment on the properties of insulin receptors. Diabetes 30: 773–780, 1981

    Google Scholar 

  • Giraud F, Claret M, Garay R. Interactions of cholesterol with the Na pump in red blood cells. Nature 264: 646–648, 1976

    Article  PubMed  CAS  Google Scholar 

  • Gjone E. Familial lecithin: cholesterol acyltransferase deficiency — a clinical survey. Scandinavian Journal of Clinical and Laboratory Investigation 33(Suppl. 73): 73–82, 1974

    Google Scholar 

  • Glickman RM, Sabesin SM. Lipoprotein metabolism. In Arias et al. (Eds) The liver: biology and pathobiology, pp. 331–354, Raven Press, New York, 1988

    Google Scholar 

  • Glomset JA. High density lipoproteins in human health and disease. Advances in Internal Medicine 25: 91–116, 1980

    PubMed  CAS  Google Scholar 

  • Gotto AM, Pownall HJ, Havel RJ. Introduction to the plasma lipoproteins. Methods in Enzymology 128: 3–41, 1986

    Article  PubMed  CAS  Google Scholar 

  • Griffin GE, Pasternak CA. The cell surface and disease. Clinical Science 63: 1–9, 1982

    PubMed  CAS  Google Scholar 

  • Hagerman JS, Gould RG. The in vitro interchange of cholesterol between plasma and red cells. Proceedings of the Society for Experimental Biology and Medicine 78: 329–332, 1951

    PubMed  CAS  Google Scholar 

  • Hanahan DJ, Nelson DR. Phospholipids as dynamic participants in biological processes. Journal of Lipid Research 25: 1528–1535, 1984

    PubMed  CAS  Google Scholar 

  • Harris RA, Simon FR. What should hepatologists know about membrane fluidity? Hepatology 7: 177–180, 1987

    Article  PubMed  CAS  Google Scholar 

  • Hashizume K, Koboyashi M, Ichikawa K. Guanosine 5′-triphosphate modulation of S-adenosyl-L-methionine-mediated methylation of phosphatidylethanolamine in rat liver plasma membrane. Biochemical and Biophysical Research Communications 114: 425–430, 1983

    Article  PubMed  CAS  Google Scholar 

  • Heron DS, Shinitzky M, Hershkowitz M, Samuel D. Lipid fluidity markedly modulates the binding of serotonin to mouse brain membranes. Proceedings of the National Academy of Sciences 77: 7463–7467, 1980

    Article  CAS  Google Scholar 

  • Hirata F, Axelrod J. Enzymatic synthesis and rapid translocation of phosphatidylcholine by two methyltransferases in erythrocyte membranes. Proceedings of the National Academy of Sciences 75: 2348–2352, 1978a

    Article  CAS  Google Scholar 

  • Hirata F, Axelrod J. Ezymatic methylation of phosphatidylethanolamine increases erythrocyte membrane fluidity. Nature 275: 219–220, 1978b

    Article  PubMed  CAS  Google Scholar 

  • Hope MJ, Bruckdorfer KR, Owen JS, Lucy JA. Chemically induced cell fusion in vitro of erythrocytes from patients with liver diseases. Biochemical Society Transactions 5: 1144–1146, 1977

    PubMed  CAS  Google Scholar 

  • Imai Y, Owen JS. Does cholesterol deposition in renal cortical brush-border membranes initiate Na retention in liver disease? Hepatology 10: 618, 1989

    Google Scholar 

  • Jackson PA, Morgan DB. The relation between membrane cholesterol and phospholipid and sodium efflux in erythrocytes from healthy subjects and patients with chronic cholestasis. Clinical Science 62: 104–107, 1982a

    Google Scholar 

  • Jackson PA, Morgan DB. The relation between the membrane cholesterol content and anion exchange in the erythrocytes of patients with cholestasis. Biochimica et Biophysica Acta 693: 99–104, 1982b

    Article  PubMed  CAS  Google Scholar 

  • Jackson RL, Morrisett JD, Gotto AM. Lipoprotein structure and metabolism. Physiological Reviews 56: 259–316, 1976

    PubMed  CAS  Google Scholar 

  • Johnson SB, Gordon E, McClain C, Low G, Holman RT. Abnormal polyunsaturated fatty acid patterns of serum lipids in alcoholism and cirrhosis: arachidonic acid deficiency in cirrhosis. Proceedings of the National Academy of Sciences 82: 1815–1818, 1985

    Article  CAS  Google Scholar 

  • Kawata S, Chitranukroh A, Owen JS, McIntyre N. Membrane lipid changes in erythrocytes, liver and kidney in acute and chronic experimental liver disease in rats. Biochimica et Biophysica Acta 896: 26–34, 1987

    Article  PubMed  CAS  Google Scholar 

  • Laffi G, Cominelli F, Ruggiero M, Fedi S, Chianigi VP, et al. Altered platelet function in cirrhosis of the liver: impairment of inositol lipid and arachidonic acid metabolism in response to agonists. Hepatology 8: 1620–1626, 1988

    Article  PubMed  CAS  Google Scholar 

  • Laffi G, La Villa G, Pinzani M, Ciabattoni G, Patrignani P, et al. Altered renal and platelet arachidonic acid metabolism in cirrhosis. Gastroenterology 90: 274–282, 1986

    PubMed  CAS  Google Scholar 

  • Leat WMF. Man’s requirement for essential fatty acids. Trends in Biochemical Sciences 6: IX–X, 1981

    CAS  Google Scholar 

  • Marcus AJ. The eicosanoids in biology and medicine. Journal of Lipid Research 25: 1511–1516, 1984

    PubMed  CAS  Google Scholar 

  • Mead JF. The non-eicosanoid functions of the essential fatty acids. Journal of Lipid Research 25: 1517–1521, 1984

    PubMed  CAS  Google Scholar 

  • Menashe M, Lichtenberg D, Gutierrez-Merino C, Biltonen RL. Relationship between the activity of pancreatic phospholipase A2 and the physical state of the phospholipid substrate. Journal of Biological Chemistry 256: 4541–4543, 1981

    PubMed  CAS  Google Scholar 

  • Molitoris BA. Membrane fluidity: measurement and relationship to solute transport. Seminars in Nephrology 7: 61–71, 1987

    PubMed  CAS  Google Scholar 

  • Neerhout RC. Abnormalities of erythrocyte stromal lipids in hepatic diseases. Journal of Laboratory and Clinical Medicine 71: 438–477, 1968

    PubMed  CAS  Google Scholar 

  • North P, Fleischer S. Alteration of synaptic membrane cholesterol/phospholipid ratio using a lipid transfer protein. Effect on γ-aminobutyric acid uptake. Journal of Biological Chemistry 258: 1242–1253, 1983

    PubMed  CAS  Google Scholar 

  • Nunez MT, Glass J. Reconstitution of the transferrin receptor in lipid vesicles. Effect of cholesterol on the binding of transferrin. Biochemistry 21: 4139–4143, 1982

    Article  PubMed  CAS  Google Scholar 

  • Owen JS, Gillett MPT. Plasma lipids, lipoproteins and cell membranes. Biochemical Society Transactions 11: 336–340, 1983

    PubMed  CAS  Google Scholar 

  • Owen JS, McIntyre N. Erythrocyte lipid composition and sodium transport in human liver disease. Biochimica et Biophysica Acta 510: 168–176, 1978

    Article  PubMed  CAS  Google Scholar 

  • Owen JS, Bruckdorfer KR, Day RC, McIntyre N. Decreased erythrocyte membrane fluidity and altered lipid composition in human liver disease. Journal of Lipid Research 23: 124–132, 1982

    PubMed  CAS  Google Scholar 

  • Owen JS, Hutton RA, Day RC, Bruckdorfer KR, McIntyre N. Platelet lipid composition and platelet aggregation in human liver disease. Journal of Lipid Research 22: 423–430, 1981

    PubMed  CAS  Google Scholar 

  • Owen JS, Hutton RA, Hope MJ, Harry DS, Bruckdorfer KR, et al. Lecithin: cholesterol acyltransferase deficiency and cell membrane lipids and function in human liver disease. Scandinavian Journal of Clinical and Laboratory Investigation 38(Suppl. 150): 228–232, 1978

    Article  CAS  Google Scholar 

  • Quinn PJ. The fluidity of cell membrane and its regulation. Progress in Biophysics and Molecular Biology 38: 1–104, 1981

    Article  PubMed  CAS  Google Scholar 

  • Rafique S, Guardascione M, Burroughs AK, Owen JS. S-Adenosylmethionine (SAMe) reduces cholesterol deposition in erythrocyte membranes of cirrhotic patients. Journal of Hepatology 11(Suppl. 2): S51, 1990

    Article  Google Scholar 

  • Reed CF. Phospholipid exchange between plasma and erythrocytes in man and dog. Journal of Clinical Investigation 43: 1311–1321, 1968

    Google Scholar 

  • Rothman JE, Lenard J. Membrane asymmetry. Science 195: 743–753, 1977

    Article  PubMed  CAS  Google Scholar 

  • Schachter D. Fluidity and function of hepatocyte plasma membranes. Hepatology 4: 140–151, 1984

    Article  PubMed  CAS  Google Scholar 

  • Schrier RW, Arroyo V, Bernardi M, Epstein M, Henriksen JH, et al. Peripheral arterial vasodilation hypothesis: a proposal for the initiation of renal sodium and water retention in cirrhosis. Hepatology 8: 1151–1157, 1988

    Article  PubMed  CAS  Google Scholar 

  • Seidel D. Lipoproteins in liver disease. Journal of Clinical Chemistry and Clinical Biochemistry 25: 541–551, 1987

    CAS  Google Scholar 

  • Shattil SJ, Anaya-Galindo R, Bennett J, Colman RW, Cooper RA. Platelet hypersensitivity induced by cholesterol incorporation. Journal of Clinical Investigation 55: 636–643, 1975

    Article  PubMed  CAS  Google Scholar 

  • Shinitzky M, Henkart P. Fluidity of cell membranes: current concepts and trends. International Reviews of Cytology 60: 121–147, 1979

    Article  CAS  Google Scholar 

  • Simko V, Kelley RE, Dinscoy HP. Predicting severity of liver disease: twelve laboratory tests evaluated by multiple regression. Journal of International Medical Research 13: 249–254, 1985

    PubMed  CAS  Google Scholar 

  • Simon JB. Red cell lipids in liver disease: relationship to serum lipids and to lecithin-cholesterol acyltransferase. Journal of Laboratory and Clinical Medicine 77: 891–900, 1971

    PubMed  CAS  Google Scholar 

  • Sinclair HM. Essential fatty acids in perspective. Human Nutrition. Clinical Nutrition 38: 245–260, 1984

    PubMed  CAS  Google Scholar 

  • Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science 175: 720–731, 1972

    Article  PubMed  CAS  Google Scholar 

  • Sloop CH, Dory L, Roheim PS. Interstitial fluid lipoproteins. Journal of Lipid Research 28: 225–237, 1987

    PubMed  CAS  Google Scholar 

  • Spector AA, Yorek MA. Membrane lipid composition and cellular function. Journal of Lipid Research 26: 1015–1035, 1985

    PubMed  CAS  Google Scholar 

  • Stenson WF, Seetharam B, Talkad V, Pickett W, Dudeja P, et al. Effects of dietary fish oil supplementation on membrane fluidity and enzyme activity in rat small intestine. Biochemical Journal 263: 41–45, 1989

    PubMed  CAS  Google Scholar 

  • Stramentinoli G. Modulation of membrane fluidity by S-adenosylmethionine treatment in different experimental conditions. In Mato (Ed.) 1st Conference on Biochemical, Pharmacological and Clinical Aspects of Transmethylation, pp. 97–104, Jarypo Editores, Madrid, 1986

    Google Scholar 

  • Stuart MJ, Gerrard JM, White JG. Effect of cholesterol on production of thromboxane B2 by platelets in vitro. New England Journal of Medicine 302: 6–10, 1980

    Article  PubMed  CAS  Google Scholar 

  • Stubbs CD. Membrane fluidity: structure and dynamics of membrane lipids. Essays in Biochemistry 19: 1–39, 1983

    PubMed  CAS  Google Scholar 

  • Sunnasy D, Cairns SR, Martin F, Slavin G, Peters TJ. Chronic alcoholic skeletal muscle myopathy: a clinical, histological and biochemical assessment of muscle lipid. Journal of Clinical Pathology 36: 778–784, 1983

    Article  PubMed  CAS  Google Scholar 

  • Van Deenen LLM, De Gier J. Lipids of the red cell membrane. In Sturgenor (Ed.) The red blood cell, 2nd ed., pp. 148–214, Academic Press, New York, 1974

    Google Scholar 

  • Ways P, Reed CF, Hanahan DJ. Red-cell and plasma lipids in acanthocytosis. Journal of Clinical Investigation 42: 1248–1260, 1963

    Article  PubMed  CAS  Google Scholar 

  • Whetton AD, Gordon LM, Houslay MD. Elevated membrane cholesterol concentrations inhibit glucagon-stimulated adenylate cyclase. Biochemical Journal 210: 437–449, 1983

    PubMed  CAS  Google Scholar 

  • Willis AL. Nutritional and pharmacological factors in eicosanoid biology. Nutritional Reviews 39: 289–301, 1981

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owen, J.S. Extrahepatic Cell Membrane Lipid Abnormalities and Cellular Dysfunction in Liver Disease. Drugs 40 (Suppl 3), 73–83 (1990). https://doi.org/10.2165/00003495-199000403-00008

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199000403-00008

Keywords

Navigation