Skip to main content
Log in

Mechanism-Based Pharmacokinetic-Pharmacodynamic Modelling of the Reversal of Buprenorphine-Induced Respiratory Depression by Naloxone

A Study in Healthy Volunteers

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and objective

Respiratory depression is a potentially life-threatening adverse effect of opioid therapy. It has been postulated that the difficulty of reversing buprenorphine-induced respiratory depression is caused by slow receptor association-dissociation kinetics at the opioid μ receptor. The aim of this study was to characterise the pharmacodynamic interaction between buprenorphine and naloxone in healthy volunteers.

Methods

A competitive pharmacodynamic interaction model was proposed to describe and predict the time course of naloxone-induced reversal of respiratory depression. The model was identified using data from an adaptive naloxone dose-selection trial following intravenous administration of buprenorphine 0.2mg/70kg or 0.4mg/70kg.

Results

The pharmacokinetics of naloxone and buprenorphine were best described by a two-compartment model and a three-compartment model, respectively. A combined biophase equilibration-receptor association-dissociation pharmacodynamic model described the competitive interaction between buprenorphine and naloxone at the opioid μ receptor. For buprenorphine, the values of the rate constants of receptor association (kon) and dissociation (koff) were 0.203 mL/ng/min and 0.0172 min−1, respectively. The value of the equilibrium dissociation constant (KD) was 0.18 nmol/L. The half-life (t½) of biophase equilibration was 173 minutes. These estimates of the pharmacodynamic parameters are similar to values obtained in the absence of naloxone co-administration. For naloxone, the half-life of biophase distribution was 6.5 minutes.

Conclusions

Because of the slow receptor association-dissociation kinetics of buprenorphine in combination with the fast elimination kinetics of naloxone, naloxone is best administered as a continuous infusion for reversal of buprenorphine-induced respiratory depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Fig. 1
Fig. 2
Table IV
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baxter AD. Respiratory depression with patient-controlled analgesia. Can J Anaesth 1994; 41: 87–90

    Article  PubMed  CAS  Google Scholar 

  2. Dahan A, Sarton E, Teppema L, et al. Sex-related differences in the influence of morphine on ventilatory control in humans. Anesthesiology 1998; 88: 903–13

    Article  PubMed  CAS  Google Scholar 

  3. Davies GK, Tolhurst-Cleaver CL, James TL. Respiratory depression after intrathecal narcotics. Anaesthesia 1980; 35: 1080–3

    Article  PubMed  CAS  Google Scholar 

  4. Taylor S, Kirton OC, Staff I, et al. Postoperative day one: a high risk period for respiratory events. Am J Surg 2005; 190: 752–6

    Article  PubMed  Google Scholar 

  5. Zuurmond WW, Meert TF, Noorduin H. Partial versus full agonists for opioid-mediated analgesia: focus on fentanyl and buprenorphine. Acta Anaesthesiol Belg 2002; 53: 193–201

    PubMed  CAS  Google Scholar 

  6. Dahan A, Yassen A, Bijl H, et al. Comparison of the respiratory effects of intravenous buprenorphine and fentanyl in humans and rats. Br J Anaesth 2005; 94: 825–34

    Article  PubMed  CAS  Google Scholar 

  7. Yassen A, Kan J, Olofsen E, et al. Mechanism-based pharmacokinetic-pharmacodynamic modeling of the respiratory depressant effect of buprenorphine and fentanyl in rats. J Pharmacol Exp Ther 2006; 319: 682–92

    Article  PubMed  CAS  Google Scholar 

  8. Yassen A, Olofsen E, Romberg R, et al. Mechanism-based PK/PD modeling of the respiratory depressant effect of buprenorphine and fentanyl in healthy volunteers. Clin Pharmacol Ther 2007; 81: 50–8

    Article  PubMed  CAS  Google Scholar 

  9. Cowan A, Doxey JC, Harry EJ. The animal pharmacology of buprenorphine, an oripavine analgesic agent. Br J Pharmacol 1977; 60: 547–54

    Article  PubMed  CAS  Google Scholar 

  10. Gal TJ. Naloxone reversal of buprenorphine-induced respiratory depression. Clin Pharmacol Ther 1989; 45: 66–71

    Article  PubMed  CAS  Google Scholar 

  11. Boas RA, Villiger JW. Clinical actions of fentanyl and buprenorphine: the significance of receptor binding. Br J Anaesth 1985; 57: 192–6

    Article  PubMed  CAS  Google Scholar 

  12. Kosterlitz HW, Leslie FM, Waterfield AA. Rates of onset and offset of action of narcotic analgesics in isolated preparations. Eur J Pharmacol 1975; 32: 10–6

    Article  PubMed  CAS  Google Scholar 

  13. Villiger JW, Taylor KM. Buprenorphine: high-affinity binding to dorsal spinal cord. J Neurochem 1982; 38: 1771–3

    Article  PubMed  CAS  Google Scholar 

  14. van Dorp E, Yassen A, Sarton E, et al. Naloxone reversal of buprenorphine-induced respiratory depression. Anesthesiology 2006; 105: 51–7

    Article  PubMed  Google Scholar 

  15. Beal SL, Sheiner LB. NONMEM Project Group. NONMEM user’s guide. San Francisco (CA): University of California at San Francisco, 1999

    Google Scholar 

  16. Mandema JW, Verotta D, Sheiner LB. Building population pharmacokinetic-pharmacodynamic models: I. Models for covariate effects. J Pharmacokinet Biopharm 1992; 20: 511–28

    PubMed  CAS  Google Scholar 

  17. Jonsson EN, Karlsson MO. Xpose: an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput Methods Programs Biomed 1999; 58: 51–64

    Article  PubMed  CAS  Google Scholar 

  18. Ette EI, Williams PJ, Kim YH, et al. Model appropriateness and population pharmacokinetic modeling. J Clin Pharmacol 2003; 43: 610–23

    PubMed  CAS  Google Scholar 

  19. Dahan A, DeGoede J, Berkenbosch A, et al. The influence of oxygen on the ventilatory response to carbon dioxide in man. J Physiol 1990; 428: 485–99

    PubMed  CAS  Google Scholar 

  20. Yassen A, Olofsen E, Kan J, et al. Animal-to-human extrapolation of the pharmacokinetic and pharmacodynamic properties of buprenorphine. Clin Pharmacokinet 2007; 46: 433–47

    Article  PubMed  CAS  Google Scholar 

  21. Galynker I, Schlyer DJ, Dewey SL, et al. Opioid receptor imaging and displacement studies with [6-O-[11C]methyl]buprenorphine in baboon brain. Nucl Med Biol 1996; 23: 325–31

    Article  PubMed  CAS  Google Scholar 

  22. Cassel JA, Daubert JD, DeHaven RN. [(3)H]Alvimopan binding to the micro opioid receptor: comparative binding kinetics of opioid antagonists. Eur J Pharmacol 2005; 520: 29–36

    Article  PubMed  CAS  Google Scholar 

  23. Weinstein SH, Pfeffer M, Schor JM. Metabolism and pharmacokinetics of naloxone. Adv Biochem Psychopharmacol 1973; 8: 525–35

    PubMed  CAS  Google Scholar 

  24. Ngai SH, Berkowitz BA, Yang JC, et al. Pharmacokinetics of naloxone in rats and in man: basis for its potency and short duration of action. Anesthesiology 1976; 44: 398–401

    Article  PubMed  CAS  Google Scholar 

  25. Mehta V, Phillips JP, Antman AC, et al. Investigation of buprenorphine-induced respiratory depression in anaesthetized patients and its reversibility [abstract]. Br J Anaesth 2005; 94: 399–400P

    Article  Google Scholar 

  26. Bowdle TA. Pharmacology of analgesia. In: Healy TEJ, Knight PR, editors. A practice of anesthesia. London: Wylie and Churchill-Davidson’s, 2003: 543–63

    Google Scholar 

  27. Morgan D, Cook CD, Smith MA, et al. An examination of the interactions between the antinociceptive effects of morphine and various mu-opioids: the role of intrinsic efficacy and stimulus intensity. Anesth Analg 1999; 88: 407–13

    PubMed  CAS  Google Scholar 

  28. Mizoguchi H, Spaulding A, Leitermann R, et al. Buprenorphine blocks epsilon- and micro-opioid receptor-mediated anti-nociception in the mouse. J Pharmacol Exp Ther 2003; 306: 394–400

    Article  PubMed  CAS  Google Scholar 

  29. Kogel B, Christoph T, Strassburger W, et al. Interaction of muopioid receptor agonists and antagonists with the analgesic effect of buprenorphine in mice. Eur J Pain 2005; 9: 599–611

    Article  PubMed  Google Scholar 

  30. Thomsen AB, Becker N, Eriksen J. Opioid rotation in chronic non-malignant pain patients: a retrospective study. Acta Anaesthesiol Scand 1999; 43: 918–23

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by Grünenthal GmbH (Aachen, Germany). The authors have no potential conflicts of interest that are relevant to the content of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meindert Danhof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yassen, A., Olofsen, E., van Dorp, E. et al. Mechanism-Based Pharmacokinetic-Pharmacodynamic Modelling of the Reversal of Buprenorphine-Induced Respiratory Depression by Naloxone. Clin Pharmacokinet 46, 965–980 (2007). https://doi.org/10.2165/00003088-200746110-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200746110-00004

Keywords

Navigation