Skip to main content
Log in

Pharmacokinetic Optimisation of Opioid Treatment in Acute Pain Therapy

  • Review Article
  • Disease Management
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Traditionally, opioids have been administered as fixed doses at fixed dose intervals. This approach has been largely ineffective. Patient-controlled analgesia (PCA) and upgraded traditional approaches incorporating flexibility in dose size and dose interval, and titration for an effect in individual patients with the monitoring of pain and sedation scores, can greatly improve the efficacy of opioid administration. Optimising opioid use, therefore, entails optimising the titration process.

Opioids have similar pharmacodynamic properties but have widely different kinetic properties. The most important of these is the delay between the blood concentrations of an opioid and its analgesic or other effects, which probably relate to the delay required for blood and brain and spinal cord (CNS) equilibrium. The half-lives of these delays range from approximately 34 minutes for morphine to 1 minute for alfentanil. The titration is influenced by the time needed after an initial dose before it is safe to administer a second dose and the duration of the effects of a single dose, which varies widely between opioids, doses and routes of administration. To compare opioids and routes of administration, we examined the relative CNS concentration profiles of opioids — the CNS concentration expressed as a percentage of its maximum value. The relative onset was the defined as the time the relative CNS concentration first rose to 80% of maximum, while the relative duration was defined as the length of time the concentration was above 80%. For an intravenous bolus dose, the relative onset varies from approximately 1 for alfentanil to 6 minutes for morphine, while their relative durations are approximately 2 and 96 minutes, respectively.

Although all of the common opioids, perhaps with the exception of alfentanil, have kinetic and dynamic properties suitable for use in PCA with intravenous bolus doses, the long relative duration of morphine makes it particularly suited to an upgraded traditional approach using staff administered intramuscular or subcutaneous doses. There is a clear kinetic preference for regimens with a rapid onset and short duration (e.g. intravenous PCA) for coping with incident pain. It is shown that, in general, titration is improved by the more frequent administration of smaller doses, but it is important to use additional doses to initially ‘load’ a patient. The titration of opioids should always be accompanied by the monitoring of pain and sedation scores and ventilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benedetti C, Premuda L. The history of opium and its derivatives. In: Benedetti C, Chapman CR, Giron G, editors. Advances in pain research and therapy: opioid analgesia. Vol. 14. New York: Raven Press, 1990: 1–36

    Google Scholar 

  2. Lasagna L, Beecher HK. The optimal dose of morphine. JAMA 1954; 156: 230–4

    Article  CAS  Google Scholar 

  3. Ferrante FM, Covino BG. Patient-controlled analgesia: a historical perspective. In: Ferrante FM, Ostheimei GW, Covino BG, editors. Patient-controlled analgesia. Boston: Blackwell Scientific Publications, 1990: 3–9

    Google Scholar 

  4. Macintyre PE, Ready LB. Acute pain management: a practical guide. London: WB Saunders, 1996

    Google Scholar 

  5. van den Nieuwenhuyzen MCO, Engbers FHM, Burm AGL, et al. Computer controlled infusion of alfentanil versus patient-controlled administration of morphine for postoperative analgesia: a double blind randomized trial. Anesth Analg 1995; 81: 671–9

    PubMed  Google Scholar 

  6. Yeager MP, Glass DD, Neff RK, et al. Epidural anesthesia and analgesia in high risk surgical patients. Anesthesiology 1987; 66: 729–36

    Article  PubMed  CAS  Google Scholar 

  7. Sechzer PH. Objective measurement of pain. Anesthesiology 1968: 29: 209–10

    Article  Google Scholar 

  8. Keeri-Szanto M. Apparatus for demand analgesia. Can Anaesth Soc J 1971; 18: 581–2

    Article  PubMed  CAS  Google Scholar 

  9. Evans JM, Rosen M, MacCarthy J, et al. Apparatus for patient-controlled administration of intravenous narcotics during labour. Lancet 1976 Jan 3; 1(7949): 17–8

    Article  PubMed  CAS  Google Scholar 

  10. White PF. Mishaps with patient-controlled analgesia. Anesthesiology 1987; 66: 81–3

    Article  PubMed  CAS  Google Scholar 

  11. Ashburn MA, Love G, Pace NL. Respiratory-related critical events with intravenous patient-controlled analgesia. Clin J Pain 1994; 10: 52–6

    Article  PubMed  CAS  Google Scholar 

  12. Ballantyne JC, Carr DB, Chalmers TC, et al. Postoperative patient controlled analgesia: meta-analyses of initial randomized control trials. J Clin Anesth 1993; 5: 182–93

    Article  PubMed  CAS  Google Scholar 

  13. Macintyre PE, Jarvis DA. Age is the best predictor of postoperative morphine requirements. Pain 1996; 64: 357–64

    Article  PubMed  CAS  Google Scholar 

  14. Hill HF, Mather LE. Patient-controlled analgesia: pharmacokinetics and therapeutic considerations. Clin Pharmacokinet 1993; 24: 124–40

    Article  PubMed  CAS  Google Scholar 

  15. Gould TH, Crosby DL, Harmer M, et al. Policy for controlling pain after surgery: effect of sequential changes in management. BMJ 1992 Nov 14; 305: 1187–93

    Article  PubMed  CAS  Google Scholar 

  16. Lehmann KA. New developments in patient controlled postoperative analgesia. Ann Med 1995; 27: 271–82

    Article  PubMed  CAS  Google Scholar 

  17. Minto CF, Schnider TW, Egan TD, et al. The influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. Anesthesiology 1997; 86: 10–23

    Article  PubMed  CAS  Google Scholar 

  18. Scott JC, Stanski DR. Decreased fentanyl and alfentanil dose requirements with age: a simultaneous pharmacokinetic and pharmacodynamic evaluation. J Pharmacol Exp Ther 1987; 240: 159–66

    PubMed  CAS  Google Scholar 

  19. Porter J, Jick H. Addiction rare in patients treated with narcotics. N Engl J Med 1980; 302: 123

    PubMed  CAS  Google Scholar 

  20. Wasylak TJ, Abbott FV, English MJM, et al. Reduction of postoperative morbidity following patient controlled morphine. Can J Anaesth 1990; 37: 726–31

    Article  PubMed  CAS  Google Scholar 

  21. Breivik H. Benefits, risks and economics of post-operative pain management programs. Bailliere’s Clin Anaesthesiol 1995; 9: 403–21

    Article  Google Scholar 

  22. Moote CA. Postoperative pain management: back to basics. Can J Anaesth 1995; 42: 453–7

    Article  PubMed  CAS  Google Scholar 

  23. Ready LB. Postoperative pain management: beyond basics [letter]. Can J Anaesth 1996; 43: 193–4

    Article  PubMed  CAS  Google Scholar 

  24. Smythe M, Loughlin K, Schad RF, et al. Patient controlled analgesia versus intramuscular analgesic therapy. Am J Hosp Pharm 1994; 51: 1433–40

    PubMed  CAS  Google Scholar 

  25. Boulanger A, Choiniere M, Roy D, et al. Comparison between patient controlled analgesia and intramuscular meperidine after thoracotomy. Can J Anaesth 1993; 40: 409–15

    Article  PubMed  CAS  Google Scholar 

  26. Colwell Jr CW, Morris BA. Patient controlled analgesia compared with intramuscular injection of analgesics for the management of pain after an orthopaedic procedure. J Bone Joint Surg Am 1995; 77: 726–33

    PubMed  Google Scholar 

  27. Harmer M. Postoperative pain relief — time to take our heads out of the sand? [editorial]. Anaesthesia 1991; 46: 167–8

    Article  PubMed  CAS  Google Scholar 

  28. Mather LE. Opioid analgesic drugs. In: Nimmo WS, Rowbotham DJ, Smith G, editors. Anaesthesia. Vol. 1. Oxford: Blackwell Scientific Publications, 1994: 132–65

    Google Scholar 

  29. Mather LE. Pharmacokinetics and pharmacodynamic profiles of opioid analgesics: a sameness amongst equals. Pain 1990; 43: 3–6

    Article  PubMed  CAS  Google Scholar 

  30. Wood M. Opioid agonists and antagonists. In: Wood M, Wood AJJ, editors. Drugs and Anesthesia: pharmacology for anesthesiologists. 2nd ed. Baltimore: Williams and Wilkins, 1990: 129–78

    Google Scholar 

  31. Hughes MA, Glass PSA, Jacobs JR. Context sensitive half-time in multi-compartment pharmacokinetic models for intravenous anaesthetic drugs. Anesthesiology 1992; 76: 334–41

    Article  PubMed  CAS  Google Scholar 

  32. Stanski DR, Greenblat DJ, Lowenstein E. Kinetics of intravenous and intramuscular morphine. Clin Pharm Ther 1978; 24: 52–9

    CAS  Google Scholar 

  33. Mather LE, Tucker GT, Pflug AE, et al. Meperidine kinetics in man. Clin Pharm Ther 1975; 17: 21–30

    CAS  Google Scholar 

  34. Verbeeck RK, Branch RA, Wilkinson GR. Meperidine disposition in man: influence of urinary pH and route of administration. Clin Pharm Ther 1981; 30: 619–28

    Article  CAS  Google Scholar 

  35. Shafer SL, Varvel JR. Pharmacokinetics, pharmacodynamics and rational opioid selection. Anesthesiology 1991; 74: 55–63

    Google Scholar 

  36. Khojasteh A, Evans W, Reynolds RD. Controlled release oral morphine in the treatment of cancer pain with pharmacokinetic correlation. J Clin Oncol 1987 5: 956–61

    PubMed  CAS  Google Scholar 

  37. Gourlay GK, Cherry DA, Cousins MJ. A comparative study of the efficacy and pharmacokinetics of oral methadone and morphine in the treatment of severe pain in patients with cancer. Pain 1986; 25: 297–312

    Article  PubMed  CAS  Google Scholar 

  38. Hull CJ, Van Beem HBH, Mcleod K. A pharmacodynamic model for pancuronium. Br J Anaesth 1978; 50: 1113–22

    Article  PubMed  CAS  Google Scholar 

  39. Sheiner LB, Stanski DR, Vozeh S, et al. Simultaneous modelling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin Pharmacol Ther 1979; 25: 358–71

    PubMed  CAS  Google Scholar 

  40. Holford NH, Sheiner LB. Kinetics of pharmacologic response. Pharmacol Ther 1982; 16: 143–66

    Article  PubMed  CAS  Google Scholar 

  41. Agnati LF, Zoli M, Biagini G, et al. Neurophysiological aspects of pain. Anaesth Pharmacol Rev 1993; 1: 101–13

    Google Scholar 

  42. Watkins LR. Algesiometry in laboratory animals and man: current concepts and future directions. In: Chapman RC, Loeser JD, editors. Advances in pain research and therapy: issues in pain measurement. Vol. 12. New York: Raven, 1989: 249–66

    Google Scholar 

  43. Asmundstad TA, Morland J, Paulsen RE. Distribution of morphine 6-glucuronide and morphine across the blood brain barrier in awake, freely moving rats investigated by in vivo microdialysis sampling. J Pharmacol Exp Ther 1995; 275: 435–41

    Google Scholar 

  44. Gardmark M, Ekblom M, Bouw R, et al. Quantitation of effect delay and acute tolerance development to morphine in the rat. J Pharm Exp Ther 1993; 267: 1061–7

    CAS  Google Scholar 

  45. Qiao G, Fung KF. Studies of kinetics and simultaneous pharmacokinetic and pharmacodynamic modeling of meperidine in goats. Acta Vet Scand Suppl 1991; 87: 174–6

    Google Scholar 

  46. Upton RN, Ludbrook GL, Gray EC, et al. The cerebral pharmacokinetics of meperidine and alfentanil in conscious sheep. Anesthesiology 1997; 86: 1317–25

    Article  PubMed  CAS  Google Scholar 

  47. Bjorkman S, Wada DR, Stanski DR, et al. Comparative physiological pharmacokinetics of fentanyl and alfentanil in rats and humans based on parametric single tissue models. J Pharmacokinet Biopharm 1994: 22: 381–410

    PubMed  CAS  Google Scholar 

  48. Hartvig P, Bergstrom K, Lindberg B, et al. Kinetics of 11C-la-belled opiates in the brain of Rhesus Monkeys. J Pharm Exp Ther 1984; 230: 250–5

    CAS  Google Scholar 

  49. Scott JC, Cooke JE, Stanski DR. Electroencephalographic quantitation of opioid effect: comparative pharmacodynamics of fentanyl and sufentanil. Anesthesiology 1991; 74: 34–42

    Article  PubMed  CAS  Google Scholar 

  50. Lemmens HJ, Dyck JB, Shafer SL, et al. Pharmacokinetic-pharmacodynamic modeling in drug development: application to the investigational opioid trefentanil. Clin Pharmacol Ther 1994; 56: 261–71

    Article  PubMed  CAS  Google Scholar 

  51. Egan TD, Minto CF, Hermann DJ, et al. Remifentanil versus alfentanil: comparative pharmacokinetics and pharmacodynamics in healthy adult male volunteers. Anesthesiology 1996; 84: 821–33

    Article  PubMed  CAS  Google Scholar 

  52. Kramer TH, d’Amours RH, Buettner C. Pharmacodynamic model of the effects of morphine and morphine-6-glucuronide during patient controlled analgesia. Clin Pharmacol Ther 1996; 59: 132

    Article  Google Scholar 

  53. Chapman CR, Hill HF, Saeger L, et al. Profiles of opioid analgesia in humans after intravenous bolus administration: alfentanil, fentanyl and morphine compared on experimental pain. Pain 1990; 43: 47–55

    Article  PubMed  CAS  Google Scholar 

  54. McQuay HJ, Sullivan AF, Smallman K, et al. Intrathecal opioids, potency and lipophilicity. Pain 1989; 36: 111–5

    Article  PubMed  CAS  Google Scholar 

  55. Leysen JE, Gommeren W. Drug-receptor dissociation time, new tool for drug research: receptor binding affinity and drug-receptor dissociation profiles of serotonin-S2, Dopamine-D2, Histamine-Hi antagonists and opiates. Drug Dev Res 1986; 8: 119–31

    Article  CAS  Google Scholar 

  56. Upton RN, Ludbrook GL, Grant C, et al. In vivo relationships between the cerebral pharmacokinetics and pharmacodynamics of thiopentone in sheep after short-term administration. J Pharmacokin Biopharm 1996; 24: 1–18

    CAS  Google Scholar 

  57. Ludbrook GL, Upton RN, Grant C, et al. The blood and brain concentrations of propofol after rapid intravenous injection in sheep, and their relationships to cerebral effects. Anaesth Intens Care 1996; 24: 445–52

    CAS  Google Scholar 

  58. Hug Jr CC. Lipid solubility, pharmacokinetics, and the EEG: Are you better off than you were four years ago? [editorial]. Anesthesiology 1985; 62: 221–6

    Article  PubMed  CAS  Google Scholar 

  59. Stanski DR. Narcotic pharmacokinetics and dynamics: the basis of infusion applications. Anaesth Intens Care 1987; 15: 23–6

    CAS  Google Scholar 

  60. Hawkins DJ, Roberts DR, Ilsley AH, et al. An automated system for testing the accuracy of patient-controlled analgesia devices. Anaesthesia 1992; 47: 693–6

    Article  PubMed  CAS  Google Scholar 

  61. Dahlstrom B, Tamsen A, Paalzow L, et al. Patient controlled analgesic therapy. IV: pharmacokinetics and analgesic plasma concentrations of morphine. Clin Pharmacokinet 1982; 7: 266–79

    Article  PubMed  CAS  Google Scholar 

  62. Tamsen A, Hartvig P, Fagerlund C, et al. Patient controlled analgesic therapy. Pt 1: pharmacokinetics of pethidine in the per- and postoperative periods. Glin Pharmacokinet 1982; 7: 149–63

    Article  CAS  Google Scholar 

  63. Hill HF, Saeger L, Bjurstrom R, et al. Steady-state infusions of opioids in human volunteers. I: pharmacokinetic tailoring. Pain 1990; 43: 57–67

    Article  PubMed  CAS  Google Scholar 

  64. Mather LE, Bjorkman S. Pitfalls in pharmacokinetics. Anaesth Pharmacol Rev 1994; 2: 260–270

    CAS  Google Scholar 

  65. Mather LE, Owen H. The scientific basis of patient controlled analgesia. Anaesth Intens Care 1988; 16: 427–47

    CAS  Google Scholar 

  66. Hill HF, Chapman CR, Saeger LS, et al. Steady-state infusions of opioids in human. II. Concentration-effect relationships and therapeutic margins. Pain 1990; 43: 69–79

    Article  PubMed  CAS  Google Scholar 

  67. Bailey JM. Technique for quantifying the duration of intravenous anesthetic effect. Anesthesiology 1995; 83: 1095–103

    Article  PubMed  CAS  Google Scholar 

  68. Austin KL, Stapleton JV, Mather LE. Multiple intramuscular injections: a major source of variability in analgesic response to meperidine. Pain 1980; 8: 47–62

    Article  PubMed  CAS  Google Scholar 

  69. Tamsen A, Hartvig P, Fagerlund C, et al. Patient controlled analgesic therapy. II: individual analgesic demand and analgesic plasma concentrations of pethidine in postoperative pain. Clin Pharmacokinet 1982; 7: 164–75

    Article  PubMed  CAS  Google Scholar 

  70. Stapleton JV, Austin KL, Mather LE. A pharmacokinetic approach to postoperative pain: continuous infusion of pethidine Anaesth Intens Care 1979; 7: 25–32

    CAS  Google Scholar 

  71. Owen H, Szekely SM, Plummer JL, et al. Variables of patient controlled analgesia. 2: concurrent infusion. Anaesthesia 1989; 44: 11–3

    Article  PubMed  CAS  Google Scholar 

  72. Parker PK, Holtman B, White PF. Patient controlled analgesia: does a concurrent opioid infusion improve management after surgery? JAMA 1991; 266: 1947–52

    Article  PubMed  CAS  Google Scholar 

  73. Hill HF, Jacobson RC, Coda BA, et al. A computer-based system for controlling plasma opioid concentration according to patient need for analgesia. Clin Pharmacokinet 1991; 20: 319–30

    Article  PubMed  CAS  Google Scholar 

  74. Glass PSA, Reves JG. Drug delivery system to improve the peri-operative administration of intravenous drugs: computer assisted continuous infusion (CACI). Anesth Analg 1995; 81: 665–7

    PubMed  CAS  Google Scholar 

  75. Shafer SL, Gregg K. Algorithims to rapidly achieve and maintain stable drug concentrations at the site of drug effect with a computer controlled infusion pump. J Pharmacokinet Biopharm 1992; 20: 147–169

    PubMed  CAS  Google Scholar 

  76. Owen H, Brose WG, Plummer JL, et al. Variables of patient-controlled analgesia. 3: test of an infusion demand system using alfentanil. Anaesthesia 1990; 45: 452–5

    Article  PubMed  CAS  Google Scholar 

  77. Semple TJ, Upton RN, Macintyre PE, et al. Morphine blood concentrations in elderly post-operative patients following administration via an indwelling subcutaneous cannula. Anaesthesia 1997; 52: 318–23

    Article  PubMed  CAS  Google Scholar 

  78. Brunk SF, Delle M. Morphine metabolism in man. Clin Pharmacol Ther 1974; 16: 51–7

    PubMed  CAS  Google Scholar 

  79. Ronald AL, Docherty D, Broom J, et al. Subarachnoid local anesthetic block does not affect morphine absorption from paired intramuscular and subcutaneous injection sites in the elderly patient. Anesth Analg 1993; 76: 778–82

    Article  PubMed  CAS  Google Scholar 

  80. Cooper IM. Morphine for postoperative analgesia: a comparison of intramuscular and subcutaneous routes of administration. Anaesth Intens Care 1996; 24: 574–8

    CAS  Google Scholar 

  81. Tamsen A, Bondesson U, Dahlstrom B, et al. Patient-controlled analgesic therapy, Pt III: pharmacokinetics and analgesic plasma concentrations of ketobemidone. Clin Pharmacokinet 1982; 7: 252–65

    Article  PubMed  CAS  Google Scholar 

  82. Owen H, Plummer J, Ilsley A, et al. Variable dose patient controlled analgesia: a preliminary report. Anaesthesia 1995; 50: 855–7

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard N. Upton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Upton, R.N., Semple, T.J. & Macintyre, P.E. Pharmacokinetic Optimisation of Opioid Treatment in Acute Pain Therapy. Clin. Pharmacokinet. 33, 225–244 (1997). https://doi.org/10.2165/00003088-199733030-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199733030-00005

Keywords

Navigation