Skip to main content
Log in

Problems of Delivery of Monoclonal Antibodies

Pharmaceutical and Pharmacokinetic Solutions

  • Review Article
  • Drug Delivery Systems
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Monoclonal antibodies to tumour-associated antigens have great theoretical potential for the specific targeting of radioactivity and anti-neoplastic agents to tumours. The clinical success of monoclonal antibody—based cancer diagnosis and therapy depends, however, on solving a number of pharmacokinetic delivery problems. These include: (i) slow elimination of monoclonal antibodies from the blood and poor vascular permeability; (ii) low and heterogeneous tumour uptake; (iii) cross-reactivity with normal tissues; (iv) metabolism of monoclonal antibody conjugates; and (v) immunogenicity of murine forms in humans.

As a result of extensive pharmaceutical and pharmacokinetic research conducted over the past 10 to 15 years, several potential solutions to these delivery problems have been identified. Blood concentrations of antibody conjugates may be reduced through regional administration, the use of antibody fragments, interventional strategies and various pre-targeting techniques. Tumour uptake may be increased through administration of higher doses, or the use of agents to increase tumour vascular permeability. Tumour retention of antibody conjugates may be improved by inhibition of metabolism, by using more stable linkage chemistry. Alternatively, normal tissue retention may be decreased through the use of metabolisable chemical linkages inserted between the antibody and conjugated moiety.

Very small antigen-binding fragments and peptides that exhibit improved tumour penetration and more rapid elimination from the blood and normal tissues have been prepared by genetic engineering techniques. Chimeric (mouse/human) and human monoclonal antibodies have been developed to circumvent the problem of immunogenicity. Future research will continue to be focused on improvements in the design of monoclonal antibodies for tumour targeting, with the ultimate goal of finally uncovering the ‘magic bullet’ envisioned by Paul Ehrlich almost a century ago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gallinger S, Reilly RM, Kirsh JC, et al. Comparative dual label study of first and second generation antitumor-associated glycoprotein-72 monoclonal antibodies in colorectal cancer patients. Cancer Res 1993; 53: 271–8

    PubMed  CAS  Google Scholar 

  2. Divgi CR, Scott AM, McDermott K, et al. Clinical comparison of radiolocalization of two monoclonal antibodies (mAbs) against the TAG-72 antigen. Nucl Med Biol 1994; 21: 9–15

    PubMed  CAS  Google Scholar 

  3. Abdel-Nabi HH, Schwartz AN, Goldfogel G, et al. Colorectal tumors: scintigraphy with In-111 anti-CEA monoclonal antibody and correlation with surgical, histopathologic and immunohistochemical findings. Radiology 1988; 166: 747–52

    PubMed  CAS  Google Scholar 

  4. Hnatowich DJ, Chinol M, Siebecker DA, et al. Patient biodistribution of intraperitoneally administered yttrium-90-labeled antibody. J Nucl Med 1988; 29: 1428–34

    PubMed  CAS  Google Scholar 

  5. Weiner LM, O’Dwyer J, Kitson J, et al. Phase I evaluation of an anti-breast carcinoma monoclonal antibody 260F9-recombinant ricin A chain immunoconjugate. Cancer Res 1989; 49: 4062–7

    PubMed  CAS  Google Scholar 

  6. Schneck D, Butler F, Dugan W, et al. Disposition of a murine monoclonal antibody vinca conjugate (KS1/4-DAVLB) in patients with adenocarcinomas. Clin Pharmacol Ther 1990; 47: 36–41

    PubMed  CAS  Google Scholar 

  7. Goldenberg DM, DeLand F, Kim E, et al. Use of radiolabelled antibodies to carcinoembryonic antigen for the detection and localization of diverse cancer by external photoscanning. N Engl J Med 1978; 298: 1384–8

    PubMed  CAS  Google Scholar 

  8. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of pre-defined specificity. Nature 1975; 256: 495–7

    PubMed  CAS  Google Scholar 

  9. Reilly RM, Kirsh J, Gallinger S, et al. Compartmental analysis of the pharmacokinetics of radioiodinated monoclonal antibody B72.3 in colon cancer patients. Nucl Med Biol 1993; 20: 57–64

    PubMed  CAS  Google Scholar 

  10. Hnatowich DJ, Gionet M, Rusckowski M, et al. Pharmacokinetics of 111in-labeled OC-125 antibody in cancer patients compared with the 19-9 antibody. Cancer Res 1987; 47: 6111–7

    PubMed  CAS  Google Scholar 

  11. Griffin TW, Bokhari F, Collins J, et al. A preliminary pharmacokinetic study of 111in-labeled 260F9 anti-(breast cancer) antibody in patients. Cancer Immunol Immunother 1989; 29: 43–50

    PubMed  CAS  Google Scholar 

  12. Meredith RF, LoBuglio AF, Plott WE, et al. Pharmacokinetics, immune response, and biodistribution of iodine-131-labeled chimeric mouse/human IgG, k 17-1A monoclonal antibody. J Nucl Med 1991; 32: 1162–8

    PubMed  CAS  Google Scholar 

  13. Trown PW, Rearden DT, Carroll SF, et al. Improved pharmacokinetics and tumor localization of immunotoxins constructed with the Mr 30,000 form of ricin A chain. Cancer Res 1991; 51: 4219–25

    PubMed  CAS  Google Scholar 

  14. Reilly RM. Radioimmunotherapy of malignancies. Clin Pharm 1991; 10: 359–75

    PubMed  CAS  Google Scholar 

  15. Jain RK. Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res 1990; 50 Suppl.: 814S–9S

    PubMed  CAS  Google Scholar 

  16. Dvorak HF, Nagy JA, Dvorak AM. Structure of solid tumors and their vasculature: implications for therapy with monoclonal antibodies. Cancer Cells 1991; 3: 77–85

    PubMed  CAS  Google Scholar 

  17. Jain RK, Baxter LT. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res 1988; 48: 7022–32

    PubMed  CAS  Google Scholar 

  18. Esteban JM, Colcher D, Sugarbaker P, et al. Quantitative and qualitative aspects of radiolocalization in colon cancer patients of intravenously administered MAb B72.3. Int J Cancer 1987; 39: 50–9

    PubMed  CAS  Google Scholar 

  19. Colcher D, Esteban JM, Carrasquillo JA, et al. Quantitative analyses of selective radiolabeled monoclonal antibody localization in metastatic lesions of colorectal cancer patients. Cancer Res 1987; 47: 1185–9

    PubMed  CAS  Google Scholar 

  20. Welt S, Divgi CR, Real FX, et al. Quantitative analysis of antibody localization in human metastatic colon cancer: a phase I study of monoclonal antibody A33. J Clin Oncol 1990; 8: 1894–906

    PubMed  CAS  Google Scholar 

  21. Philben VJ, Kakowatz JG, Beatty BG, et al. The effect of tumor CEA content and tumor size on tissue uptake of indium 111-labeled anti-CEA monoclonal antibody. Cancer 1986; 57: 571–6

    PubMed  CAS  Google Scholar 

  22. Muraro R, Frati L, Bei R, et al. Regional heterogeneity and complementation of the expression of the tumor-associated glycoprotein 72 epitopes in colorectal cancer. Cancer Res 1991; 51: 5378–83

    PubMed  CAS  Google Scholar 

  23. Fujimori K, Covell DG, Fletcher JE, et al. A modeling analysis of monoclonal antibody percolation through tumors: a binding site barrier. J Nucl Med 1990; 31: 1191–8

    PubMed  CAS  Google Scholar 

  24. van Osdol W, Fujimori K, Weinstein JN. An analysis of monoclonal antibody distribution in microscopic tumor nodules: consequences of a ‘binding site barrier’. Cancer Res 1991; 51: 4776–84

    PubMed  Google Scholar 

  25. Baxter LT, Jain RK. Transport of fluid and macromolecules in tumors III: role of binding and metabolism. Microvasc Res 1991; 41: 5–23

    PubMed  CAS  Google Scholar 

  26. Juweid M, Neumann R, Paik C, et al. Micropharmacology of monoclonal antibodies in solid tumors: direct experimental evidence for a binding site barrier. Cancer Res 1992; 52: 5144–53

    PubMed  CAS  Google Scholar 

  27. Hagan PL, Halpern SE, Dillman RO, et al. Tumor size: effect on monoclonal antibody uptake in tumor models. J Nucl Med 1986; 27: 422–7

    PubMed  CAS  Google Scholar 

  28. Williams LE, Duda RB, Proffitt RT, et al. Tumor uptake as a function of tumor mass: a mathematical model. J Nucl Med 1988; 29: 103–9

    PubMed  CAS  Google Scholar 

  29. Watanabe Y, Endo K, Koizumi M, et al. Effect of tumor mass and antigenic nature on the biodistribution of labeled monoclonal antibodies in mice. Cancer Res 1988; 49: 2884–9

    Google Scholar 

  30. Gould BJ, Borowitz MJ, Groves ES, et al. Phase I study of an anti-breast cancer immunotoxin by continuous infusion: report of a targeted toxic effect not predicted by animal studies. J Natl Cancer Inst 1989; 81: 775–81

    PubMed  CAS  Google Scholar 

  31. Beatty JD, Beatty BG, O’Connor-Tressel M, et al. Mechanisms of tissue uptake and metabolism of radiolabeled antibody-role of antigen: antibody complex formation. Cancer Res 1990; 50 Suppl.: 840S–5S

    PubMed  CAS  Google Scholar 

  32. Fritzberg AR, Berninger RW, Hadley SW, et al. Approaches to radiolabeling of antibodies for diagnosis and therapy of cancer. Pharm Res 1988; 5: 325–34

    PubMed  CAS  Google Scholar 

  33. Hnatowich DJ, Childs RL, Lanteigne D, et al. The preparation of DTPA-coupled antibodies radiolabeled with metallic radionuclides: an improved method. J Immunol Methods 1983; 65: 147–57

    PubMed  CAS  Google Scholar 

  34. Hnatowich DJ, Griffin TW, Kosciuczyk C, et al. Pharmacokinetics of an indium-111-labeled monoclonal antibody in cancer patients. J Nucl Med 1985; 26: 849–58

    PubMed  CAS  Google Scholar 

  35. Reilly R, Lee N, Houle S, et al. In vitro stability of EDTA and DTPA immunoconjugates of monoclonal antibody 2G3 labeled with indium-111. Appl Radiat Isot 1992; 43: 961–7

    CAS  Google Scholar 

  36. Roselli M, Schlom J, Gansow OA, et al. Comparative biodistributions of yttrium- and indium-labeled monoclonal antibody B72.3 in athymic mice bearing human colon carcinoma xenografts. J Nucl Med 1989; 30: 672–82

    PubMed  CAS  Google Scholar 

  37. Duncan JR, Welch MJ. Intracellular metabolism of indium-111-DTPA labeled receptor targeted proteins. J Nucl Med 1993; 34: 1728–38

    PubMed  CAS  Google Scholar 

  38. Mattes MJ, Griffiths GL, Diril H, et al. Processing of antibodyradioisotope conjugates after binding to the surface of tumor cells. Cancer 1994; 73: 787–93

    PubMed  CAS  Google Scholar 

  39. Khaw BA, Cooney J, Edgington T, et al. Differences in experimental tumor localization of dual-labeled monoclonal antibody. J Nucl Med 1986; 27: 1293–9

    PubMed  CAS  Google Scholar 

  40. Yokoyama K, Carrasquillo JA, Chang AE, et al. Differences in biodistribution of indium-111- and iodine-131-labeled B72.3 monoclonal antibodies in patients with colorectal cancer. J Nucl Med 1989; 30: 320–7

    PubMed  CAS  Google Scholar 

  41. Reilly RM. Immunoscintigraphy of tumours using 99Tcm-labelled monoclonal antibodies: a review. Nucl Med Commun 1993; 14: 347–59

    PubMed  CAS  Google Scholar 

  42. Mardirossian G, Wu C, Rusckowski M, et al. The stability of 99Tcm directly labelled to an Fab’ antibody via stannous ion and mercaptoethanol reduction. Nucl Med Commun 1992; 13: 503–12

    PubMed  CAS  Google Scholar 

  43. Reilly RM, Ng K, Polihronis J, et al. Immunoscintigraphy of human colon cancer xenografts in nude mice using a second-generation TAG-72 monoclonal antibody labelled with 99Tcm. Nucl Med Commun 1994; 15: 379–87

    PubMed  CAS  Google Scholar 

  44. Kasina S, Rao TN, Srinivasan A, et al. Development and biological evaluation of a kit for preformed chelate technetium-99m radiolabeling of an antibody Fab fragment using a diamide dimercaptide chelating agent. J Nucl Med 1991; 32: 1445–51

    PubMed  CAS  Google Scholar 

  45. Calafat J, Molthoff C, Janssen H, et al. Endocytosis and intracellular routing of an antibody-ricin A chain conjugate. Cancer Res 1988; 48: 3822–7

    PubMed  CAS  Google Scholar 

  46. Schroff RW, Foon KA, Beatty SM, et al. Human anti-murine immunoglobulin responses in patients receiving monoclonal antibody therapy. Cancer Res 1985; 45: 879–85

    PubMed  CAS  Google Scholar 

  47. Pimm MV, Perkins AC, Armitage NC, et al. The characteristics of blood-borne radiolabels and the effect of anti-mouse IgG antibodies on localization of radiolabeled monoclonal antibody in cancer patients. J Nucl Med 1985; 26: 1011–23

    PubMed  CAS  Google Scholar 

  48. Kalofonos HP, Rusckowski M, Siebecker DA, et al. Imaging of tumor in patients with indium-111-labeled biotin and streptavidin conjugated antibodies: preliminary communication. J Nucl Med 1990; 31: 1791–6

    PubMed  CAS  Google Scholar 

  49. Watanabe N, Goodwin DA, Meares CF, et al. Immunogenicity in rabbits and mice of an antibody-chelate conjugate: comparison of (S) and (R) macrocyclic enantiomers and an acyclic chelating agent. Cancer Res 1994; 54: 1049–54

    PubMed  CAS  Google Scholar 

  50. Malamitsi J, Skarlos D, Fotiou S, et al. Intracavitary use of two radiolabeled tumor-associated monoclonal antibodies. J Nucl Med 1988; 29: 1910–5

    PubMed  CAS  Google Scholar 

  51. Carrasquillo JA, Sugarbaker P, Colcher D, et al. Peritoneal carcinomatosis: imaging with intraperitoneal injection of I-131-labeled B72.3 monoclonal antibody. Radiology 1988; 167: 35–40

    PubMed  CAS  Google Scholar 

  52. Mattes MJ. Biodistribution of antibodies after intraperitoneal or intravenous injection and effect of carbohydrate modifications. J Natl Cancer Inst 1987; 79: 855–63

    PubMed  CAS  Google Scholar 

  53. Nagy JA, Herzberg KT, Masse EM, et al. Exchange of macromolecules between plasma and peritoneal cavity in ascites tumor-bearing, normal, and serotonin-injected mice. Cancer Res 1989; 49: 5448–58

    PubMed  CAS  Google Scholar 

  54. Ward B, Mather S, Shepherd J, et al. The treatment of intraperitoneal malignant disease with monoclonal antibody guided 131I radiotherapy. Br J Cancer 1988; 58: 658–62

    PubMed  CAS  Google Scholar 

  55. Ward BG, Mather SJ, Hawkins LR, et al. Localization of radioiodine conjugated to the monoclonal antibody HMFG2 in human ovarian carcinoma: assessment of intravenous and intraperitoneal routes of administration. Cancer Res 1987; 47: 4719–23

    PubMed  CAS  Google Scholar 

  56. Wahl RL, Liebert M. Improved radiolabeled monoclonal antibody uptake by lavage of intraperitoneal carcinomatosis in mice. J Nucl Med 1989; 30: 60–5

    PubMed  CAS  Google Scholar 

  57. Tjandra JJ, Russell IS, Collins JP, et al. Immunolymphoscintigraphy for the detection of lymph node metastases from breast cancer. Cancer Res 1989; 49: 1600–8

    PubMed  CAS  Google Scholar 

  58. Kairemo KJA. Immunolymphoscintigraphy with 99mTc-labeled monoclonal antibody (BW 431/26) reacting with carcinoembryonic antigen in breast cancer. Cancer Res 1990; 50 Suppl.: 949S–54S

    PubMed  CAS  Google Scholar 

  59. Wahl RL, Geatti O, Liebert M, et al. Kinetics of interstitially administered monoclonal antibodies for purposes of lymphoscintigraphy. J Nucl Med 1987; 28: 1736–44

    PubMed  CAS  Google Scholar 

  60. Covell DG, Barbet J, Holton OD, et al. Pharmacokinetics of monoclonal immunoglobulin G1, F(ab’)2 and Fab’ in mice. Cancer Res 1986; 46: 3969–78

    PubMed  CAS  Google Scholar 

  61. Yokota T, Milenic DE, Whitlow M, et al. Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res 1992; 52: 3402–8

    PubMed  CAS  Google Scholar 

  62. Verhoeyen M, Riechmann L. Engineering of antibodies. Bioessays 1988; 8: 74–9

    PubMed  CAS  Google Scholar 

  63. Winter G, Milstein C. Man-made antibodies. Nature 1991; 349: 293–9

    PubMed  CAS  Google Scholar 

  64. Davis TG, Bedzyk WD, Voss EW, et al. Single chain antibody (SCA) encoding genes: one-step construction and expression in eukaryotic cells. Biotechnology 1991; 9: 165–9

    PubMed  CAS  Google Scholar 

  65. Xiang J, Roder J, Hozumi N. Production of murine V-human Cr1 chimeric anti-TAG72 antibody using V region cDNA amplified by PCR. Mol Immunol 1990; 27: 809–17

    PubMed  CAS  Google Scholar 

  66. Buchner J, Rudolph R. Renaturation, purification and characterization of recombinant Fab-fragments produced in Escherichia coli. Biotechnology 1991; 9: 157–62

    PubMed  CAS  Google Scholar 

  67. Pluckthun A, Skerra A. Expression of functional antibody Fv and Fab fragments in Escherichia coli. Methods Enzymol 1989; 178: 497–515

    PubMed  CAS  Google Scholar 

  68. Hiatt A, Cafferkey R, Bowdish K. Production of antibodies in transgenic plants. Nature 1989; 342: 76–8

    PubMed  CAS  Google Scholar 

  69. Pastan I, Fitzgerald D. Recombinant toxins for cancer treatment. Science 1991; 254: 1173–7

    PubMed  CAS  Google Scholar 

  70. Skerra A, Pluckthun A. Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 1988; 240: 1038–41

    PubMed  CAS  Google Scholar 

  71. Riechmann L, Foote J, Winter G. Expression of an antibody Fv fragment in myeloma cells. J Mol Biol 1988; 203: 825–8

    PubMed  CAS  Google Scholar 

  72. Sahagan BG, Dorai H, Saltzaber-Muller J, et al. A genetically engineered murine/human chimeric antibody retains specificity for human tumor-associated antigen. J Immunol 1986; 137: 1066–74

    PubMed  CAS  Google Scholar 

  73. Brinkmann U, Pai LH, Fitzgerald DJ, et al. B3(fv)-PE 38KDEL, a single-chain immunotoxin that causes complete regression of a human carcinoma in mice. Proc Natl Acad Sci USA 1991; 88: 8616–20

    PubMed  CAS  Google Scholar 

  74. Williams WV, Moss DA, Kieber-Emmons T, et al. Development of biologically active peptides based on antibody structure. Proc Natl Acad Sci USA 1989; 86: 5537–41

    PubMed  CAS  Google Scholar 

  75. Goldenberg DM, Sharkey RM, Ford E. Anti-antibody enhancement of iodine-131 anti-CEA radioimmunodetection in experimental and clinical studies. J Nucl Med 1987; 28: 1604–10

    PubMed  CAS  Google Scholar 

  76. Stewart JSW, Siuolapenko GB, Hird V, et al. Clearance of 131I-labeled murine monoclonal antibody from patients’ blood by intravenous human anti-murine immunoglobulin antibody. Cancer Res 1990; 50: 563–7

    PubMed  CAS  Google Scholar 

  77. Blumenthal RD, Sharkey RM, Snyder D, et al. Reduction by anti-antibody administration of the radiotoxicity associated with 131I-labeled antibody to carcinoembryonic antigen in cancer radioimmunotherapy. J Natl Cancer Inst 1989; 81: 194–9

    PubMed  CAS  Google Scholar 

  78. Sgouros G. Plasmapheresis in radioimmunotherapy of micrometastases: a mathematical modeling and dosimetrical analysis. J Nucl Med 1992; 33: 2167–79

    PubMed  CAS  Google Scholar 

  79. Norrgren K, Strand SE, Nilsson R, et al. A general, extracorporeal immunoadsorption method to increase the tumor-to-normal tissue ratio in radioimmunoimaging and radioimmunotherapy. J Nucl Med 1993; 34: 448–54

    PubMed  CAS  Google Scholar 

  80. Paganelli G, Belloni C, Magnani P, et al. Two-step targeting in ovarian cancer patients using biotinylated monoclonal antibodies and radioactive streptavidin. Eur J Nucl Med 1992; 19: 322–9

    PubMed  CAS  Google Scholar 

  81. Sinitsyn VV, Mamontova AG, Checkneva YY, et al. Rapid blood clearance of biotinylated IgG after infusion of avidin. J Nucl Med 1989; 30: 66–9

    PubMed  CAS  Google Scholar 

  82. Paganelli G, Pervez S, Siocardi AG, et al. Intraperitoneal radio-localization of tumors pre-targeted by biotinylated monoclonal antibodies. Int J Cancer 1990; 45: 1184–9

    PubMed  CAS  Google Scholar 

  83. Paganelli G, Magnani P, Zito F, et al. Three-step monoclonal antibody tumor targeting in CEA positive patients. Cancer Res 1991; 51: 5960–6

    PubMed  CAS  Google Scholar 

  84. Paganelli G, Magnani P, Zito F, et al. Pre-targeted immunoscintigraphy in glioma patients: tumour localization and single-photon emission tomography imaging of [99mTc]PnAO-biotin. Eur J Nucl Med 1994; 21: 314–21

    PubMed  CAS  Google Scholar 

  85. Modorati G, Brancato R, Paganelli G, et al. Immunoscintigraphy with three step monoclonal pre-targeting technique in diagnosis of uveal melanoma: preliminary results. Br J Ophthalmol 1994; 78: 19–23

    PubMed  CAS  Google Scholar 

  86. Ngai WM, Reilly RM, Polihronis J, et al. In-vitro and in-vivo evaluation of streptavidin immunoconjugates of the second generation TAG-72 monoclonal antibody CC49. Nucl Med Biol 1992; 22: 77–86

    Google Scholar 

  87. Del Rosario RB, Wahl RL. Disulfide bond-targeted radiolabeling: tumor specificity of a streptavidin-biotinylated monoclonal antibody complex. Cancer Res 1990: 50 Suppl.: 804S–8S

    PubMed  Google Scholar 

  88. Rowlinson-Busza G, Hnatowich DJ, Rusckowski M, et al. Xenograft localization using pretargeted streptavidin-conjugated monoclonal antibody and 111In-labeled biotin. Antibody Immunoconjugates Radiopharm 1993; 6: 97–109

    Google Scholar 

  89. Yoshikawa T, Pardridge WM. Biotin delivery to brain with a covalent conjugate of avidin and a monoclonal antibody to the transferrin receptor. J Pharmacol Exp Ther 1992; 263: 897–903

    PubMed  CAS  Google Scholar 

  90. Yuan F, Baxter LT, Jain RK. Pharmacokinetic analysis of two-step approaches using bifunctional enzyme-conjugated antibodies. Cancer Res 1991; 51: 3119–30

    PubMed  CAS  Google Scholar 

  91. van Osdol WW, Sung C, Dedrick RL, et al. A distributed pharmacokinetic model of two-step imaging and treatment protocols. J Nucl Med 1993; 34: 1552–64

    PubMed  Google Scholar 

  92. Rearden DT, Meares CF, Goodwin DA, et al. Antibodies against metal chelates. Nature 1985; 316: 265–8

    Google Scholar 

  93. Goodwin DA, Meares CF, McCall MJ, et al. Pre-targeted immunoscintigraphy of murine tumors with indium-111 labeled bifunctional haptens. J Nucl Med 1988; 29: 226–34

    PubMed  CAS  Google Scholar 

  94. Goodwin DA. A new approach to the problem of targeting specific monoclonal antibodies to human tumors using antihapten chimeric antibodies. Nucl Med Biol 1989; 16: 645–51

    CAS  Google Scholar 

  95. Kuijpers WHA, Bos ES, Kaspersen FM, et al. Specific recognition of antibody-oligonucleotide conjugates by radiolabeled antisense nucleotides: a novel approach for two-step radioimmunotherapy of cancer. Bioconjug Chem 1993; 4: 94–102

    PubMed  CAS  Google Scholar 

  96. Bos ES, Kuijpers WHA, Meesters-Winters M, et al. In vitro evaluation of DNA-DNA hybridization as a two-step approach in radioimmunotherapy of cancer. Cancer Res 1994; 54: 3479–86

    PubMed  CAS  Google Scholar 

  97. Goodwin DA, Meares CF, David GF, et al. Monoclonal antibodies as reversible equilibrium carriers of radiopharmaceuticals. Nucl Med Biol 1986; 13: 383–91

    CAS  Google Scholar 

  98. Bagshawe KD. Antibody-directed enzyme prodrug therapy. Clin Pharmacokinet 1994; 27: 368–76

    PubMed  CAS  Google Scholar 

  99. Goshorn SC, Svenson HP, Kerr DE, et al. Genetic construction, expression and characterization of a single chain anti-carcinoma antibody fused to beta-lactamase. Cancer Res 1993; 53: 2123–7

    PubMed  CAS  Google Scholar 

  100. Wallace PM, MacMaster JF, Smith VF, et al. Intratumoural generation of 5-fluorouracil mediated by an antibody-cytosine deaminase conjugate in combination with 5-fluorocytosine. Cancer Res 1994; 54: 2719–23

    PubMed  CAS  Google Scholar 

  101. Sharma SK, Bagshawe KD, Burke PJ, et al. Galactosylated antibodies and antibody-enzyme conjugates in ADEPT. Cancer 1994; 73 Suppl.: 1114–20

    PubMed  CAS  Google Scholar 

  102. Fenwick JR, Philpott GW, Connett JM. Biodistribution and histological localization of anti-human colon cancer monoclonal antibody (MAb) 1A3: the influence of administered MAb dose on tumor uptake. Int J Cancer 1989; 44: 1017–27

    PubMed  CAS  Google Scholar 

  103. Carrasquillo JA, Abrams PG, Schroff RW, et al. Effect of antibody dose on the imaging and biodistribution of indium-111 9.2.27 anti-melanoma monoclonal antibody. J Nucl Med 1988; 29: 39–47

    PubMed  CAS  Google Scholar 

  104. Khawli LA, Miller GK, Epstein AL. Effect of seven vasoactive immunoconjugates on the enhancement of monoclonal antibody uptake in tumors. Cancer 1994; 73 Suppl.: 824–31

    PubMed  CAS  Google Scholar 

  105. Baxter LT, Jain RK, Svensio E. Vascular permeability and interstitial diffusion of macromolecules in the hamster cheek pouch: effects of vasoactive drugs. Microvasc Res 1987; 34: 336–48

    PubMed  CAS  Google Scholar 

  106. Muraro R, Kuroki M, Wunderlich D, et al. Generation and characterization of B72.3 second-generation monoclonal antibodies reactive with the tumor-associated glycoprotein 72 antigen. Cancer Res 1988; 48: 4588–96

    PubMed  CAS  Google Scholar 

  107. Colcher D, Minelli MF, Roselli M, et al. Radioimmunolocalization of human carcinoma xenografts with B72.3 second-generation monoclonal antibodies. Cancer Res 1988; 48: 4597–603

    PubMed  CAS  Google Scholar 

  108. Schlom J, Eggensperger D, Colcher D, et al. Therapeutic advantage of high-affinity anticarcinoma radioimmunoconjugates. Cancer Res 1992; 52: 1067–72

    PubMed  CAS  Google Scholar 

  109. Thorpe PE, Derbyshire EJ, King SW, et al. Targeting the vasculature of carcinomas and other solid tumors [abstract]. Proceedings of the 85th Meeting of the American Association for Cancer Research; 1994 April 10–13; San Francisco, 35: 379

  110. Deshpande SV, Subramanian R, McCall MJ, et al. Metabolism of indium chelates attached to monoclonal antibody: minimal transchelation of indium from benzyl-EDTA chelate in-vivo. J Nucl Med 1990; 31: 218–24

    PubMed  CAS  Google Scholar 

  111. Hnatowich DJ, Rusckowski M, Brill AB, et al. Pharmacokinetics in patients of an anti-carcinoembryonic antigen antibody radiolabeled with indium-111 using a novel diethylenetriamine pentaacetic acid chelator. Cancer Res 1990; 50: 7272–8

    PubMed  CAS  Google Scholar 

  112. Blend MJ, Greager JA, Atcher RW, et al. Improved sarcoma imaging and reduced hepatic activity with indium-111-SCNBz-DTPA linked to MoAb 19–24. J Nucl Med 1988; 29: 1810–6

    PubMed  CAS  Google Scholar 

  113. Vijayakumar V, Blend MJ, Johnson DK, et al. Improved detection of hepatic lesions using MoAb B72.3 and a modified 111In labelling technique in patients with recurrent colon cancer. Nucl Med Commun 1993; 14: 658–66

    PubMed  CAS  Google Scholar 

  114. Deshpande S, DeNardo SJ, Kukis DL, et al. Yttrium-90-labeled monoclonal antibody for therapy: labeling by a new macrocyclic bifunctional chelating agent. J Nucl Med 1990; 31: 473–9

    PubMed  CAS  Google Scholar 

  115. Zalutsky MR, Narula AS. A method for the radiohalogenation of proteins resulting in decreased thyroid uptake of radioiodine. Appl Radiat Isot 1987; 38: 1051–5

    CAS  Google Scholar 

  116. Meares CF, McCall MJ, Deshpande SV, et al. Chelate radio-chemistry: cleavable linkers lead to altered levels of radioactivity in the liver. Int J Cancer 1988; 2 Suppl.: 99–102

    CAS  Google Scholar 

  117. Paik CH, Yokoyama K, Reynolds JC, et al. Reduction of background activities by introduction of a diester linkage between antibody and a chelate in radioimmunodetection of tumor. J Nucl Med 1989; 30: 1693–701

    PubMed  CAS  Google Scholar 

  118. Paik CH, Quadri SM, Reba RC. Interposition of different chemical linkages between antibody and 111In-DTPA to accelerate clearance from non-target organs and blood. Nucl Med Biol 1989; 16: 475–81

    CAS  Google Scholar 

  119. Boulianne G, Hozumi N, Shulman MJ. Production of functional chimeric mouse/human antibody. Nature 1984; 312: 643–6

    PubMed  CAS  Google Scholar 

  120. Morrison SL, Johnson MJ, Herzenberg LA, et al. Chimeric human antibody molecules: mouse antigen domains with human constant region domains. Proc Natl Acad Sci USA 1984; 81: 6851–5

    PubMed  CAS  Google Scholar 

  121. Ochi A, Hawley R, Shulman MJ. Transfer of a cloned immunoglobulin light-chain gene to mutant hybridoma cells restores specific antibody production. Nature 1983; 302: 340–2

    PubMed  CAS  Google Scholar 

  122. Ochi A, Hawley R, Hawley T, et al. Functional immunoglobulin M production after transfection of cloned immunoglobulin heavy and light genes into lymphoid cells. Proc Natl Acad Sci USA 1983; 80: 6351–5

    PubMed  CAS  Google Scholar 

  123. Weiden PL, Breitz HB, Seiler CA, et al. Rhenium-186-labeled chimeric antibody NR-LU-13: pharmacokinetics, biodistribution and immunogenicity relative to murine analog NR-LU-10. J Nucl Med 1993; 34: 2111–9

    PubMed  CAS  Google Scholar 

  124. Liu AY, Robinson RR, Murray ED, et al. Production of a mousehuman chimeric monoclonal antibody to CD20 with potent Fc-dependent biological activity. J Immunol 1987; 139: 3521–6

    PubMed  CAS  Google Scholar 

  125. Steplevski Z, Sun LK, Shearman CW, et al. Biological activity of human-mouse IgG1, IgG2, IgG3 and IgG4 chimeric monoclonal antibodies with anti-tumor specificity. Proc Natl Acad Sci USA 1988; 85: 4852–6

    Google Scholar 

  126. LoBuglio AE, Wheeler RH, Trang J, et al. Mouse/human chimeric monoclonal antibody in man: kinetics and immune response. Proc Natl Acad Sci USA 1989; 86: 4220–4

    PubMed  CAS  Google Scholar 

  127. Oudin J, Cazenave PA. Similar idiotypic specificities in immunoglobulin fractions with different antibody functions or even without detectable antibody function. Proc Natl Acad Sci USA 1971; 63: 2616–20

    Google Scholar 

  128. Jones PT, Dear PH, Foote J, et al. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 1986; 321: 522–9

    PubMed  CAS  Google Scholar 

  129. Hird V, Verhoeyen M, Badley RA, et al. Tumor localization with a radioactively labelled reshaped human monoclonal antibody. Br J Cancer 1991; 64: 911–4

    PubMed  CAS  Google Scholar 

  130. Khazaeli MB, Saleh MN, Liu TP, et al. Pharmacokinetics and immune response of 131I-chimeric mouse/human B72.3 (human γ4) monoclonal antibody in humans. Cancer Res 1991; 51: 5461–6

    PubMed  CAS  Google Scholar 

  131. Ehrlich P. On immunity with special reference to cell life. Proc R Soc London 1900; 66: 424–8

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reilly, R.M., Sandhu, J., Alvarez-Diez, T.M. et al. Problems of Delivery of Monoclonal Antibodies. Clin. Pharmacokinet. 28, 126–142 (1995). https://doi.org/10.2165/00003088-199528020-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199528020-00004

Keywords

Navigation